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Abstract

This dissertation addresses the persistent challenge of manual parameter tuning in factor graph-
based estimation systems. While the application of automated tuning methodologies has been
explored for Kalman filters, this work proposes to extend this approach to the domain of factor
graphs. The performance and statistical consistency of these estimators can be highly depen-
dent on the accurate selection of noise model parameters, a task that is often time-consuming,
subjective, and prone to error. This work proposes an automated tuning methodology utilising
Bayesian Optimisation (BO), a sample-efficient global optimisation technique. By employing a
Gaussian Process to model the relationship between the system’s tuning parameters and a chosen
performance metric, the BO framework intelligently selects the next set of parameters to evaluate,
thereby reducing the number of computationally expensive simulations. The proposed approach is
demonstrated to efficiently identify optimal and statistically consistent parameter configurations,
outperforming traditional manual tuning methods. The research validates the efficacy of Bayesian
Optimisation as a powerful tool for solving complex, non-linear tuning problems, paving the way
for more robust and reliable estimation in diverse applications such as robotics, Simultaneous

Localisation and Mapping (SLAM), and sensor fusion.
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Chapter 1

Introduction

1.1 Background and Motivation

Tracking is a fundamental capability in robotics, forming the backbone of autonomous navigation
and interaction with the environment. From household robots that clean and map rooms to
exploration robots navigating complex terrains such as caves or disaster zones, accurate tracking
ensures robots can localise themselves, plan motion, and interact safely with their surroundings [1,
2].

Despite its importance, reliable tracking remains a challenging problem due to sensor noise,
environmental uncertainties, and nonlinear system dynamics. Traditional approaches, such as
Kalman Filters [1] or Particle Filters [2], address some of these challenges but have limitations.
The Kalman Filter is a linear minimum mean squared error estimator, and while it is Bayes-optimal
in the linear Gaussian case, its applicability can be restricted in nonlinear or non-Gaussian settings.
Particle Filters, on the other hand, can cope with nonlinearities but often require a large number
of particles to maintain accuracy, which can be computationally expensive. Both approaches may
still face difficulties in long-term tracking or in high-dimensional, complex environments.

Factor graphs have emerged as a modern and flexible framework for robotic tracking [3, 4, 5]. By
representing the system as a graph of variables and factors, they allow a more natural representation
of complex conditional dependencies between system variables. This structure enables optimisation
methods to better access and combine information from multiple sources for state estimation. As
a result, factor graph-based tracking can handle nonlinearities more effectively than traditional
filters, integrate multiple sensor modalities, and scale to large problems [6].

While factor graphs provide a powerful framework, their performance can be influenced by
choices such as noise models, motion covariances, and solver parameters [7]. Selecting suitable
parameters can improve tracking accuracy and consistency, though factor graphs remain capable of
producing reasonable results even with default or approximate settings. This observation motivates
research into methods for systematically exploring and optimising these parameters in a principled

way.

1.2 Problem Statement

In robotic tracking, the accuracy and reliability of a system depend not only on the underlying
model but also on how parameters, such as noise covariances and solver settings, are selected [7].

Manual tuning is labor-intensive, requires domain expertise, and may not yield optimal results.



This is particularly relevant for factor graph-based tracking, where high-dimensional, nonlinear
parameter spaces make systematic tuning challenging.

Existing automated tuning approaches, such as Bayesian optimisation applied to Kalman Fil-
ters [8], provide promising directions. However, they are limited by assumptions of linearity and
Gaussian noise, which restricts their applicability in complex, nonlinear robotic tracking problems.
Factor graph-based systems offer a more expressive framework, but automated tuning methods for
these systems are still an active research area.

The problem this research addresses is therefore: how can we systematically and automati-
cally tune factor graph-based tracking systems in robotics to improve accuracy, consistency, and

robustness across diverse environments and sensor setups?

1.3 Manual Tuning Methods and Historical Context

The foundation of parameter tuning in state estimation stems from early work on Kalman filters
and their extensions. Simon’s book on optimal state estimation [9] and Julier’s contributions to
unscented Kalman filters [10] established the theoretical basis for consistency evaluation, while
Bar-Shalom’s seminal work formalized statistical consistency conditions that remain fundamental
to modern estimation theory [11].

Early approaches relied heavily on manual parameter adjustment, where engineers would iter-
atively modify process and measurement noise parameters based on qualitative assessment of filter
performance. Grid search methods emerged as a more systematic alternative, involving exhaustive
exploration of parameter spaces to find optimal configurations [12]. However, these approaches
suffer from computational inefficiency and poor scalability to high-dimensional parameter spaces,

motivating the development of more sophisticated automated tuning strategies.

1.4 Project Objectives

The primary objectives of this project are as follows:

1. Design and implement a factor graph-based tracking system: Develop a tracking
system capable of estimating the state of a robot using sensor inputs such as Global Posi-
tioning System (GPS) and odometry. The system will be structured using factor graphs,
leveraging open-source libraries such as Georgia Tech Smoothing And Mapping (GTSAM)

or General Graph Optimisation (g2o) for efficient optimisation.

2. Investigate the use of Bayesian optimisation for tuning factor graphs: Examine
whether an approach commonly used for tuning Kalman filters can be effectively applied to
the problem of tuning factor graph systems. Evaluate how well the automatically selected

noise and solver parameters support accurate and consistent tracking.

3. Explore refinement strategies for parameter tuning: Investigate additional methods
to improve parameter selection and assess potential gains in consistency compared to the

baseline automatically tuned system.

4. Evaluate system performance across different scenarios: Test the tracking system’s
performance under various conditions including different trajectory lengths, initialization
strategies, and model assumptions to understand system behavior and identify key perfor-

mance factors.



1.5 Thesis Outline

This dissertation is structured as follows:

e Chapter 2 — Background: Introduces the technical concepts and theoretical foundations
relevant to the project, including tracking, factor graphs, noise modelling, and Bayesian
optimisation. This chapter provides the necessary context for understanding the methodology

and experiments.

e Chapter 3— 2D Tracking Problem: This chapter details the design and implementation
of the factor graph-based tracking system used for the experiments. It confirms the validity
of the system structure with ground truth measurements. The chapter’s primary focus is on
demonstrating a functional system, providing a clear reference point before the automated

tuning process is introduced.

e Chapter 4 — Experiments: This is the core of the research. This chapter focuses on
applying Bayesian optimisation to automatically tune the noise model parameters of the
factor graph. It presents the methodology for the BO framework, including the choice of
performance metrics and the experimental setup. The chapter then presents the results
of the automated tuning process, demonstrating how BO efficiently identifies optimal and

statistically consistent parameter configurations.

e Chapter 5 — Extension: This chapter explores further ideas of aiding the tuning process,
in order to better the chances of finding optimal parameters. It also talks about the effect of
optimally tuned consistency metrics on the accuracy of the trajectory tracking using mean

squared error.

e Chapter 6 — Conclusion and Future Work: This final chapter summarises the key
findings and contributions of the research, highlighting the successful application of Bayesian
Optimisation to automatically tune factor graph parameters. It also outlines potential di-
rections for future work, including further optimisation strategies, the exploration of more

complex tuning problems, and considerations for real-world deployment.



Chapter 2

Background and Prerequisites

This chapter provides the foundational concepts and mathematical tools necessary to understand
factor graph-based state estimation. It begins with an introduction to factor graphs as a probabilis-
tic modeling framework and explains how these models arise naturally from Bayesian inference in
robotics and tracking problems. Next the discussion of linear and nonlinear system models, leading
to the conditions required for statistical consistency in estimators. Finally, the introduction of key
consistency metrics, Normalized Estimation Error Squared (NEES) and Normalized Innovation
Squared (NIS), describing how they are used to assess and tune graph-based estimators. These

ideas form the basis for the tuning and optimization methods developed in subsequent chapters.

2.1 Factor Graphs as Statistical Models

Factor graphs are a class of probabilistic graphical models that represent the factorization of a joint
probability distribution into a product of local functions [4, 13]. This structure underpins many
state estimation problems in robotics, where the goal is to infer hidden variables (e.g., robot poses,
landmark locations) from noisy and partial observations.

Formally, let X = {X3, X5,..., X,,} be the set of random variables in the estimation problem.
The joint distribution p(X) can often be factorized as:

p(X) = [T é:(5)), (2.1)
j=1

where each factor ¢; is a non-negative function depending only on a subset S; C X of variables
[4].

A factor graph is a bipartite graph G = (V, F, E) with variable nodes V', factor nodes F', and
edges I connecting each factor node ¢; to its variables S;. This explicit encoding of local depen-
dencies reveals the problem’s conditional independence structure and enables scalable inference
[13].

2.1.1 Bayesian Estimation and Factorization

Many estimation problems in robotics, including object tracking, can be formulated using Bayesian
inference. Given a sequence of observations Z = {z1, ..., z;} and control inputs or known dynamics
U ={u,...,u}, the goal is to estimate the posterior distribution over the current state X;. This

can be expressed using Bayes’ rule as:



p(zk | Xi) p( Xk | Z1:k—1,Ur:k)

Xp | Z,U) =
P(X | ) p(zk | Zig—1,Urk)

, (2.2)

where p(zr | Xi) is the likelihood of the observation given the state, and p(Xy | Z1.5-1,Urx) i8
the predictive prior over the current state, typically computed using a motion model or process
model.

To make these models explicit two functions are introduced. The motion model f(-), which
predicts the next state from the previous state and control inputs, and the measurement model
h(-), which predicts the expected observation from a given state. In practice, both models are

subject to noise, so they are represented as conditional probability distributions. For example:
Xy = f(Xg—1,Ug) + noise, Zy, = h(X}y) + noise.

Under standard assumptions (Markov property, conditional independence of measurements

conditioned on the states), the posterior factorizes naturally into prior, motion, and measurement

terms:
T T
p(X | 2,U) o< p(Xo) [ p(Xk | F(Xie—1,U)) [T p(Zk | B(X)) - (2.3)
1 ) k=0
prior motion factors measurement factors

This factorization can be directly represented by a factor graph: each conditional probability

corresponds to a factor ¢;, and the graph’s edges reflect the variables each factor depends upon
[5, 14].

Figure 2.1: Example of a tracking factor graph corresponding to the factorization in Equation 2.3.
Variable nodes represent robot poses Xg.x, control inputs uj.;, and measurements z,.x. Factor
nodes (black squares) correspond to priors, motion models, and measurement constraints, each
encoding a conditional probability term in the posterior distribution, represented as a Markov
Chain.

2.1.2 Gaussian Noise Models and MAP Estimation

In many state-estimation problems, including tracking, it is common to model both process and
measurement perturbations as zero-mean Gaussian noise. This modeling choice is motivated by
physical sensor characteristics, the aggregation of many independent disturbances (via the central

limit theorem), and the mathematical convenience that Gaussians belong to the exponential family,



enabling tractable local approximations after linearization. Under Gaussian noise assumptions,

each factor in the estimation contributes a quadratic penalty on its residual:

65(5;) o< exp( =4I (S7)lI3 ) (2.4)

where 7;(S;) is the residual or innovation associated with variables S;, and ¥; is the corresponding
covariance matrix. Here, the notation ||z||% denotes the squared Mahalanobis norm, defined as
2|32 = 2" Px; in this context, P = E;l, the inverse covariance matrix of the residual. This
connects directly to the factor-specific weighting in the Gaussian likelihood.

Assuming the conditional independences encoded by the factor graph, the posterior distribution
is proportional to the product of such Gaussian terms. Therefore, maximizing the posterior (e.g.,
as in equation 2.3) under Gaussian noise is equivalent to minimizing a sum of squared, covariance-

weighted residuals:

. _ . (SIZ,
X fargn}%n;HTJ(SJ)HE; . (2.5)

After linearization, this optimization reduces to solving a sparse normal equations system with
a block-structured Hessian (information) matrix. Standard nonlinear least-squares solvers, like
Gauss—Newton[15] or Levenberg—Marquardt[16, 17], exploit this sparsity efficiently. Moreover, the
inverse of the information matrix approximates the posterior covariance around the Maximum A
Posteriori (MAP) estimate. This equivalence between statistical inference and nonlinear optimiza-
tion forms the foundation of modern graph-based estimation frameworks, widely used in tracking
and related robotics problems [5, 14, 18].

2.2 System Models and Statistical Consistency

To understand how a factor graph operates in a tracking problem, it is essential to define the
underlying system models. This section outlines each component of the factor graph, the corre-
sponding system equations, and the conditions required to evaluate the statistical consistency of

the resulting estimator.

2.2.1 System Models
2.2.1.1 Linear System

Estimation problems in robotics are often represented using a discrete-time state-space formulation.

For clarity, we first consider the linear case, which captures the key interactions between variables:

Xp = Frpxp_1 + Brug + vy (2.6)
zr, = Hpxp + wy (2.7)
where:
e x;: State vector at discrete time step k,
e uy: Control input applied at time k,

e 7;: Observation or measurement at time k,



e vi: Process noise (state transition uncertainty),

e w;: Measurement noise (sensor uncertainty),

Fj: State transition matrix mapping X;_1 to X in the absence of control and noise,

By: Control input matrix mapping uj into the state space,
e H;: Observation matrix mapping the state into the measurement space.

The process and measurement noise are assumed to be zero-mean Gaussian and mutually

independent, with covariances Qj and Ry, respectively:
vi ~ N(0,Qr), wi~N(0,Ry).

2.2.1.2 Non-linear System

In practice, many robotic systems exhibit nonlinear dynamics and measurement relationships. In

such cases, the system can be expressed as:

Xp = f(Xp—1,uk) + Vi (2.8)
zr = h(Xp) + Wi (2.9)

where:
e f(-): Nonlinear state transition function,
e h(-): Nonlinear measurement function.

The noise assumptions remain the same: v, and wy, are zero-mean Gaussian with covariances

Qi and Ry, respectively.

2.2.1.3 Covariance Matrix Definitions

Let X, 2 Elxy | 1. ;] denote the conditional mean of the true state x;, given all measurements up

to time j. The corresponding estimation-error covariance is
A 3 .
Py = Cov[x —%p); | 21,]
The state estimation error is therefore
A A
€k = Xk — Xk

a random vector of the same dimension as the state.

Similarly, for a measurement model of the form
Zi = h(Xk) + Wy, W ~ N(O,Rk),

the predicted measurement is

Zgjr—1 = h(Rpp—1),

and the measurement residual (innovation) is

A ~
€2k =2k — Zk|k—1-



When h(-) is nonlinear, it is common to approximate it locally by its Jacobian Hj, evaluated

at Xj|x—1. Under this approximation, the covariance of the innovation is
Skie—1 = HyPyp_ 1 HY + Ry

These quantities, Py|;, €z, €z k, and Syp_1,are defined here in a general Bayesian estimation
context. Although they arise naturally in recursive filters such as the Kalman filter, we introduce
them primarily as notational tools to formalize the statistical consistency conditions in the next

section.

2.2.2 Statistical Consistency Conditions

Once the system models are defined, statistical consistency is evalutated using three standard
conditions [11]. Using the notation established above, with e, » = x; — Xk|k> €2,k Lz, — Zk|k—1
Pji, the estimation-error covariance, and S,—; the innovation covariance:

C.1 Unbiased state estimation.
Ele; x] =0, Vk. (2.10)
C.2 Correct error covariance (efficiency).
Elesre, ] = P, Vk. (2.11)
C.3 White Gaussian innovations.
e, ~N(0, Sp_1), Ele.x] =0, Ele.re. ;] = 6kj - Skjp—1, Yk, J, (2.12)

where dy; denotes the Kronecker delta, defined by d,; = 1 if K = j and dx; = 0 otherwise; it
compactly encodes that cross-covariances vanish for k # j.

2.2.3 Motivation for Consistency Tuning

In state estimation problems such as target tracking, statistical consistency refers to the agreement
between the uncertainty predicted by the estimator and the actual estimation error observed in
practice [11, 19]. A statistically consistent estimator provides uncertainty information that can be
relied upon when making predictions, assessing performance, or adapting model parameters.

The importance of consistency becomes clear when considering the role of uncertainty in a
tracking filter. If the estimator is overconfident, it will place too much trust in its own predictions
and may fail to respond adequately to new measurements, allowing estimation errors to persist
[11, 9]. Conversely, if the estimator is underconfident, it will overreact to measurement noise,
resulting in unstable or erratic state estimates [20, 21]. Both scenarios can lead to degraded
tracking performance and reduced reliability.

For systems that operate over extended time horizons, even small inconsistencies can accumu-
late, causing the estimated error statistics to diverge from reality [11]. This can impair downstream
decision-making processes such as sensor fusion, track association, or maneuver detection [22, 23].
Ensuring statistical consistency therefore forms a critical foundation for building robust and trust-

worthy tracking systems.



2.3 Consistency Tuning

As established in Section 2.1.1 and formalized in the statistical consistency conditions of Sec-
tion 2.2.2, a reliable estimator ideally (C.1) produces unbiased state estimates, (C.2) predicts
covariances that match the true estimation error statistics, and (C.3) yields whitened, Gaussian
innovations. In practice, however, these conditions may not hold exactly due to model mismatch,
unmodelled dynamics, or incorrect noise parameterization.

Consistency tuning refers to the process of adjusting process and measurement noise mod-
els to better satisfy these conditions. This is particularly important in graph-based estimators,
where noise parameters influence both the optimizer’s convergence behaviour and the statistical
trustworthiness of the resulting solution. The tuning process relies on metrics that transform multi-
dimensional errors and innovations into scalar quantities with well-defined statistical distributions
under the Gaussian assumptions of Section 2.1.1. Two such metrics, widely adopted are the NEES
and the NIS[24].

2.3.1 Performance Metrics: NEES and NIS

The Normalized Estimation Error Squared (NEES) evaluates whether Conditions C.1 and C.2
hold by measuring the degree to which the actual estimation error is consistent with the predicted

covariance:

NEES; £ e, P 0k, (2.13)

where e, = X — X, and Py, are defined in Section 2.2.2. For a consistent estimator, NEES,
is distributed as x2 with n, = dim(x}) Degrees of Freedom (DoF). This makes NEES a direct
test of the estimator’s unbiasedness and covariance correctness in the state space.

The Normalized Innovation Squared (NIS) is the corresponding metric for innovations and

directly evaluates Condition C.3:
NISk £ e 1Sk 185k (2.14)

where e and Sy,_; are the innovation and innovation covariance, respectively, also defined in
Section 2.2.2. A statistically consistent estimator will yield NISy ~ X%z, where n, = dim(zy).
Since NIS can be computed without access to the true state, it is particularly useful for online
monitoring and adaptive tuning in deployed systems.

In graph-based backends, NEES is typically evaluated in simulation or Monte Carlo stud-
ies—where ground truth is available. Similarly, NIS can also be evaluated in Monte Carlo studies,
but can also be continuously monitored during real-world operation to detect deviations from the

assumed noise models.

2.3.2 Theoretical Basis for the y? Properties

The x? properties of NEES and NIS follow from the quadratic form of Gaussian random variables
(see also Section 2.2.2). If e ~ N (0, X), then the scalar

g=e'X7le
follows a X?l distribution with d = dim(e) DoF. This is shown via spectral decomposition 3 =

UAU" and the whitening transformation y = X~1/2e[25], yielding ¢ = Zle y? with y; ~ N(0,1).
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Applying this to the metrics above:
NEES), ~ x7, if Conditions C.1 and C.2 hold,

NIS; ~ x5 if Condition C.3 holds.

These results are exact for linear Gaussian systems and hold approximately for nonlinear systems
under the local-linearization assumptions discussed in Section 2.2.1.2.

The rigorous statistical properties of NEES and NIS enable formal hypothesis testing for es-
timator consistency, where the NIS statistic will be applied in Chapter 3 through offline Monte

Carlo simulations for tuning.

2.4 Graph Tuning

Graph tuning in the context of factor graphs for state estimation, such as in target tracking,
involves optimizing the noise parameters (e.g., Qg, Ry in the system models) to predict their
values when their true values are unknown. The procedure typically entails running multiple Monte
Carlo simulations under a “truth model” to generate ground-truth trajectories and measurements,
computing consistency metrics like NEES and NIS, and iteratively adjusting the parameters until
the metrics align with their theoretical distributions. The goal is to estimate the noise parameters
that best reflect the underlying system dynamics, thereby enhancing the reliability and performance
of the graph-based estimator in real-world deployments, even when the true noise characteristics

are not directly available.

2.4.1 Monte Carlo-Based Consistency Metrics

Given N Monte Carlo runs, the average state error and average innovation at time k are computed

as:
N
_ 1 i
ew,k = N e;,)k, (215)
im1
N
_ 1 i
e = el) (2.16)
i=1

with corresponding sample variances providing error bars to quantify Monte Carlo uncertainty.
The time-averaged NEES and time-averaged NIS are:

1 T
f = Z Eu ks (2.17)
k=1
1 T
E=r kz_l .ty (2.18)

where T is the number of time steps.

2.4.2 Joint NEES/NIS Metrics

To mitigate “exploding/vanishing” effects in long horizons or high-dimensional states, the Joint
Normalized Estimation Error Squared (JNEES) and Joint Normalized Innovation Squared (JNIS)

11



are defined as [26]:

€x

JNEES = log (n) ’ 5 (219)
€

JNIS = log <n> 5 (220)

where n, and n, are the respective DoF.

The intuition behind the logarithm is that it normalizes the ratio between the time-averaged
metric and the expected x? mean. When the numerator (€, or €,) is close to the denominator (n,
or n,), the logarithm approaches zero, yielding a low score. Minimizing Jyggs and Jnis therefore

encourages both accurate scaling and stable behavior across Monte Carlo runs or long trajectories.

2.4.3 Consistent NEES/NIS Metrics

Chen et al. [8] extended the standard NEES and NIS metrics to the Consistent Normalized Es-
timation Error Squared (CNEES) and Consistent Normalized Innovation Squared (CNIS), which
incorporate both the mean and variance of the Monte Carlo samples. The first term in each metric
measures the deviation of the time-averaged NEES/NIS from its expected x? mean (as in the
standard JNEES/JNIS), while the second term captures the variability of the metric across runs.
Including the variance term helps prevent overconfidence in the estimator when the sample spread

is large, providing a more robust measure of consistency for tuning purposes.

G S,
Cners = |log ()‘ + |log <> ; (2:21)
Ny 2N,
~Z gz
Chis = |log <6>’ + |log < ) , (2.22)
n, 2n,
where the time-averaged sample variances are defined for the filtering case as:
1 T N
Se = (€iek — &) (223)
GUERPORS
1 T N
& _ 2
== ik — € k). 2.24
e 3) SIS 221)

el
Il

12

Il
—

It is important to note that these formulations are directly applicable to sequential filters,
where each time step produces a single state estimate and covariance. In graph-based or smoothing
approaches, which optimize over entire trajectories, the direct application of these metrics requires
computing full-trajectory statistics. CNEES and CNIS are evaluated using the complete trajectory
estimates and the full information matrix obtained from the factor graph optimization. This
approach allows the metrics to be used for tuning and assessment while acknowledging that the

statistical properties may differ from sequential filtering approaches.
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These metrics can be further extended over multiple discretization intervals At,,:

CNEES, total = Z Cnegs(Aty), (2.25)
n=1

Cnis.total = 3 Chis(At). (2.26)
n=1

Using multiple discretization intervals helps mitigate scale ambiguities that can arise when both

process and measurement noise parameters (Q and R) are adjusted simultaneously [26].

2.4.4 Extension to Graph-Based Tracking

Extending the NEES/NIS framework to factor-graph-based estimators requires care. Unlike se-
quential filters, graph-based methods optimize over the full trajectory simultaneously, and each
factor can involve multiple state variables. The total graph cost for a set of states can be ex-
pressed as a sum of factor residuals, analogous to the squared, covariance-weighted residuals used

in filtering (see Equation 2.3):

FX) = ri(8) 5 r(8)), (2.27)
j=1
where 7;(S;) is the residual for factor j involving the subset of states S;, and ¥; is the associated

covariance.

Proposition 3: Cost at the ground truth. If the graph is initialized at the ground-truth

trajectory x, without performing optimization, the resulting cost

fe=f(2s) (2.28)

captures only the contribution of measurement noise. Under Gaussian, independent noise
assumptions, this cost follows a x? distribution with degrees of freedom equal to the total dimen-

sionality of all measurement constraints in the graph:

Sfer~ X,QL*, n, = dim(z), (2.29)

where dim(z) sums over all measurements, including odometry and sensor factors. This rep-
resents a baseline cost due solely to measurement noise. Significant deviations of f, from this

distribution indicate that the assumed noise parameters may not match the actual noise.

Proposition 4: Cost at the optimized estimate. After optimizing the graph to obtain the

maximum likelihood estimate zt, the cost

fl=fa" ~x%, nl=dim(z) - dim(z), (2.30)

has reduced degrees of freedom because the optimization explains part of the variability through
the state estimates. Here dim(x) is the total number of estimated state dimensions. A properly
tuned graph should yield fT consistent with this reduced y? distribution. Systematically low values
indicate overconfidence (underestimated noise), while high values suggest overly conservative noise

assumptions.
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Discussion. These propositions establish a connection between graph-based estimation and the
classical NEES/NIS framework. By comparing the graph costs at the ground-truth trajectory and
at the optimized estimate with their expected x? distributions, statistical consistency in graphs can
be evaluated. The key difference from the filtering case is that dim(z) counts all factor constraints
rather than individual measurements, with correlations between shared variables accounted for im-
plicitly through the optimization. The ratio between dim(z) and dim(x) also plays an important
role. In dense graphs, where dim(z) > dim(z), the reduction in degrees of freedom is negligible,
whereas in sparse graphs, where dim(z) is closer to dim(z), the optimized cost becomes more sen-
sitive to the assumed noise. This motivates the use of consistency tests that explicitly incorporate

graph structure.

Practical role of CNEES/CNIS. Propositions 3 and 4 describe the expected behaviour of
graph costs under correct noise assumptions, but they do not provide a direct procedure for pa-
rameter tuning. The CNEES and CNIS metrics address this by reducing consistency to scalar
statistics that can be compared with their theoretical distributions. This reformulation allows the
tuning task to be posed as an optimization problem, in which process and measurement noise pa-
rameters are adjusted to minimise the gap between empirical and expected consistency measures.
In this way, CNEES and CNIS translate the theoretical conditions for consistency into a practical

tool for noise parameter tuning.

2.5 Baysian Optimization for Parameter Tuning

2.5.1 Motivation

In state estimation problems, such as target tracking using factor graphs, the noise parameters,
typically the process noise covariance Q and measurement noise covariance R, play a critical role
in determining estimator performance and consistency [11]. Manual tuning of these parameters is
often impractical due to the complexity of the underlying models and the sensitivity of the system

to small perturbations. Key challenges include:

1. the stochastic nature of consistency objectives like CNEES and CNIS, which are computed

via Monte Carlo simulations and therefore contain inherent noise

2. the high computational cost of each evaluation, which involves repeated factor graph opti-

mizations over multiple trajectories

3. the absence of reliable gradient information, as the objective is effectively a noisy black-box

function

While the project’s work focuses on Bayesian Optimization (BO), several alternative approaches
have been investigated for parameter tuning in state estimation. Gradient-based methods, though
computationally efficient, prove inadequate for consistency objectives due to their non-differentiable
nature and the absence of analytical gradients [12]. Evolutionary algorithms, including genetic
algorithms and particle swarm optimization, offer derivative-free alternatives but often require ex-
tensive parameter tuning themselves and may converge to suboptimal solutions [27]. For instance,
multi-objective genetic algorithms have been used for Kalman filter tuning in battery state estima-
tion [28]. Reinforcement learning approaches have shown promise for adaptive parameter selection

in some contexts, though they typically require significant training data and may not generalize
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well across different system configurations [29]. Multi-objective optimization methods attempt to
balance consistency with other performance metrics, though they introduce additional complexity
in objective function design and solution selection [28].

BO provides an effective solution for such scenarios. It is specifically designed for optimizing
expensive, black-box functions where evaluations are noisy and costly [30, 31, 32]. By treating
the objective as a stochastic black box, BO efficiently explores the parameter space with a min-
imal number of evaluations, making it well-suited for tuning noise parameters under resource
constraints. Recent applications in Kalman filter tuning have demonstrated BO’s ability to handle
noisy, stochastic objectives derived from consistency metrics, while avoiding local minima that can

trap conventional optimizers [26, 12, §].

2.5.2 Bayesian Optimisation Framework with Gaussian Processes

At the core of BO lies the use of a surrogate model to approximate the unknown objective function.
Gaussian Process (GP) are commonly employed for this purpose due to their flexibility in modeling
uncertainty and providing probabilistic predictions [33]. Formally, the objective function f(q),
where q represents the noise parameters (e.g., elements of ¢ and R), is modeled as a draw from a
GP prior:

fla@) ~GP(u(a), k(a,q')),

with mean function p(q) (often set to zero for simplicity) and covariance kernel

A2
k(a,q') = o® exp (—”q 2; H ) :

where o2 is the signal variance and p is the lengthscale controlling smoothness.
The GP is initialized with a small set of observations D,, = {(q;, y;)} 1, where y; = f(q;) +€;
and ¢ ~ N(0,02) accounts for observation noise, which is particularly relevant for stochastic

consistency metrics derived from Monte Carlo simulations. The posterior GP is refined using

Bayes’ rule. For a new point q, the predictive mean and variance are:
pn(a) = k! (K +oD) "y,

0—121((:1*) = k(q*a q*) - kI(K + J?LI)ilk*v

where K is the n x n kernel matrix with entries K;; = k(q:,q;), k« = [k(qs,q1), - -, k(qu, an)] T,

andy = [y1,---,yn] -
Figure 2.2 illustrates a 1D Gaussian Process surrogate, showing how the model predicts the

mean objective function while representing uncertainty in regions without observations.
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Gaussian Process Surrogate Example
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Figure 2.2: Illustration of a 1D Gaussian Process surrogate for Bayesian optimisation. Black circles
show observed evaluations of the objective function (e.g., Monte Carlo estimates of a consistency
metric). The blue line represents the GP predictive mean, while the shaded region corresponds
to the 95% confidence interval (p + 20). The red dashed line is the true function, included for
illustration. The GP explicitly models uncertainty between known evaluations, guiding the choice

of the next sample through acquisition functions.

Hyperparameters like 02, p, and o2 are typically optimized by maximizing the marginal log-

likelillOOd:
lo y = **1}’ K+021 ly**]- lo K+021 **n log 27

2.5.3 Acquisition Functions

Acquisition functions are pivotal in BO, as they balance exploration (sampling uncertain regions)
and exploitation (focusing on promising areas) to select the next parameter point qi+1 [32]. As-
suming minimization of the objective f(q), popular choices include:

Expected Improvement (EI): Measures the expected gain over the current best value
fla") = min f(q).
1=1,...,t
Under the posterior GP, the EI has a closed-form expression:

apr(q) = Emax(0, f(q") — f(q))] = ou(q) (Z8(2) + ¢(Z)),

where Z = %, and ® and ¢ are the cumulative distribution and probability density
functions of the standard normal distribution, respectively. A small £ > 0 can be added to Z as
Z = W to encourage more exploration [34].

Lower Confidence Bound (LCB): For minimization tasks, the acquisition function is

arce(q) = (aq) — koe(q),

where £ > 0 controls the exploration—exploitation trade-off: larger values of x emphasize explo-
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ration by sampling uncertain regions, while smaller values favor exploitation of regions with low

predicted mean. Theoretical regret bounds exist for LCB with appropriately scheduled & [35].

Comparison of behaviours. The choice of acquisition function affects the sampling strategy:

e EI focuses on regions where the expected improvement over the current best is high. It nat-

urally balances exploration and exploitation but can aggressively exploit promising regions.

e LCB explicitly trades off mean prediction and uncertainty via the x parameter. It can be
tuned to favor more exploration in highly uncertain or noisy settings, or more exploitation

in well-understood regions.

Testing both acquisition functions allows the optimizer to adapt to different objective land-
scapes. In the context of consistency tuning, where objective evaluations are noisy and the land-
scape may be multimodal, comparing EI and LCB can reveal which strategy provides more robust

convergence.

2.5.4 Application to Noise Parameter Tuning

In the context of tuning factor graphs for tracking, the parameters of interest include the process
noise intensity Q and measurement noise variance R. The objective is to minimize aggregated
consistency metrics, such as CNEES or CNIS, which quantify deviations from statistical consistency

across multiple simulated trajectories [11, 8]. The process unfolds as follows

1. Initialize a GP surrogate and select initial candidate parameters qq (e.g., via Latin hypercube

sampling)
2. Construct Q and R matrices from q
3. Perform factor graph optimization on simulated data
4. Compute the consistency score (e.g., CNEES,total) averaged over trajectories
5. Update the GP with the new observation
6. Use an acquisition function to propose the next q;y1
7. Repeat until convergence or budget exhaustion.

This yields a data-driven calibration of noise statistics, enhancing estimator reliability without
exhaustive grid searches [26, 12, 8]. In practice, constraints on parameter positivity (e.g., via
log-transforms) and multi-fidelity evaluations can further improve efficiency [31]. Extensions using

Student-t processes provide additional robustness to outliers in noisy objectives [8].

2.6 Summary and Transition

This chapter has established the theoretical foundations necessary for understanding automated
parameter tuning in factor graph-based state estimation. It began by introducing factor graphs
as probabilistic graphical models, highlighting how these structures represent the factorization
of joint probability distributions in estimation problems. The discussion then addressed system
modeling, covering both linear and nonlinear formulations, and introduced the three fundamental

conditions for statistical consistency: unbiased estimation, correct error covariance, and white
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Gaussian innovations. Building on this framework, consistency metrics such as NEES and NIS
were presented, along with their advanced variants (CNEES/CNIS) that account for both mean
and variance considerations. The chapter concluded with an overview of automated parameter
tuning strategies, with particular emphasis on BO, which employs GP surrogates to efficiently
explore parameter spaces for expensive, black-box consistency objectives. This progression from
theoretical principles to methodological considerations provides the foundation for the experimental

work and contributions developed in the following chapters.
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Chapter 3

2D-Tracking Problem Setup

This chapter describes the tracking problem used to evaluate the factor-graph estimator. Two
dynamical systems are considered: a linear Constant Velocity (CV) model and a nonlinear Constant
Turn rate (CT) model. For each system the chapter presents the system equations, the process
and observation noise models, a short trajectory example for intuition, and the ground-truth

consistency tests.

3.1 Common notation and basic assumptions

Throughout the chapter the discrete-time state is written as the column vector x; = [z, y, v, vy]T
with « and y giving the Cartesian position and v, and v, giving the Cartesian velocity. Measure-
ments are denoted zj, control inputs uy, process noise vy ~ AN (0, Q(At)) and measurement noise
wi ~ N(0,R). Process covariances Q depend on the timestep At; measurement covariances R do
not, which will be later discussed when formulating both matrix frames. Factor-graph residuals
are weighted by these covariances during least-squares optimisation.

Cross-references to Proposition dimensionality are given to the expressions in Chapter 2: (2.29)
and (2.30). Concretely, the total residual dimension used in the global x?-type checks is obtained
by summing process residual dimensions and measurement residual dimensions (this total is dim(z)
below).

3.2 Linear model

3.2.1 System model

The linear baseline uses a constant-velocity model with state
_ T
Xk = [1'7 Y, Vg, Uy] . (31)
The discrete-time linear state update is

X, = Fixp_1 + Brug + v, (32)
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with the standard constant-velocity transition and input matrices

10 At 0 A% g
1 A2
g |0 N P
00 1 0 At 0
00 0 0 At

Role of F, B, Q,R. During propagation the predicted state is Fx;_; + Bug and the process
residual used by the binary (process) factor is x5 — (Fxj—1 + Buy). That residual has covariance
Q(At) and thus Q directly determines the process-factor weight in the least-squares problem.
Measurement factors are formed from the residual z, — Hx; and are weighted by R. These two
covariances therefore control the trade-off between following the dynamical model and fitting sensor
data.

3.2.2 Process model

The discrete-time process covariance used for the linear model is the integrated constant-acceleration

form (parametrised by a single isotropic intensity V):

0 Ay, o Ay,
At V) = 3 vl 3.3
0 ALV, 0 AtV
with V, = V,, = V in the isotropic case used in experiments. Each process factor uses the Q
computed with the local At.
3.2.3 Observation model
Position measurements are Cartesian and linear in the state:
z, = Hxy, + wy, H= [12x2 02><2} ; (3.4)
and
a2 0
R = . (3.5)
0 Uz

2 2

Where once again oy = o, = 02. These measurement factors constrain the positional components

of x;, only.

3.2.4 Data generation

To evaluate the estimator performance, Monte Carlo trajectories were generated using the linear
system model described above. Each trajectory consists of 7' = 100 time steps with At = 1,
starting from initial position (0,0) with velocity (1,1). Process noise was sampled from vj ~
N(0,Qcv(At; V = 1)) at each time step, and measurement noise from wy ~ A(0, R) with 02 = 2.
A total of N = 500 independent Monte Carlo runs were generated using different random seeds to

ensure statistical diversity in the test ensemble.
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The data generation process follows the system equations exactly: xi = Fxi_1 + Bug + v
with ug = 0 (constant velocity), and measurements z; = Hxy + wy. This ensures perfect model

consistency between data generation and the factor graph estimator assumptions.

3.2.5 Trajectory example (linear)

Trajectories under the CV model are straight with the addition of process noise on top. A rep-
resentative simulated trajectory (single Monte Carlo run) is shown in Figure 3.1 to illustrate how
process noise Q produces spread over time and how measurements scatter around the true path

according to R.

Linear Trajectory (run 0)

300 1 — True
Measurements
W Start
2001 A End
100 +
oA
c
=)
E:
& _100
- 100
=200 4
—300 4
—400 o
0 200 400 600 800 1000

X Position

Figure 3.1: Representative CV trajectory with process and measurement noise (single Monte Carlo

run). The run uses the initial start position (0,0) with velocity (1,1).

3.2.6 Linear ground-truth tests

Baseline parameters set for the ground truth tests are V = 1, 02 = 2, T = 100, At = 1), and

Monte Carlo runs N = 500, giving the following Q and R covariance matrix:

O v O W=
S = O =

= O W= O
= O N O
Il
| ——
S N
N O
| ES—
—

w
(@]

S~—

Proposition 3 (ideal conditions). The total residual degrees of freedom used in the graph-
level x?2 statistic is the sum of process residual dimensions and measurement residual dimensions.

Using the notation from Chapter 2:
dim(z) = n, (T — 1) + n.T, (3.7)

where n, is the state dimension and n, the measurement dimension. For n, =4, n, = 2 (based on
the state and observation dimensions), T' = 100 this gives dim(z) = 596, and theoretical covariance

2-596 = 1192. The observed NIS values over 500 runs (Figure 3.2) show mean and covariance close
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to theory; the computed CNIS was 0.049929, leading to the claim that the system has achieved
statistical stability using the ground truth noise covariance.

700
—-—- mean=596.32
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650 -
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Linear NIS per run: q=1.000, R=2.000, DOF=596, CNIS=0.049929
625 - ’
600 .M ‘ I |r|' I
) \H y “ || | il "l ||||

variance=1134.56, mean=596.32
|\ \
l"\ i .u‘M '||! II“l 'W||
L| “ || 1
I” |

gkl i

550 +

NIS (chi2)

525

T T T
0 100 200 300 400 500
Monte Carlo run index

Figure 3.2: NIS values for the linear system under ideal conditions (Proposition 3).

Proposition 4 (non-ideal conditions). When the initial state is treated as unknown the

effective degrees of freedom are reduced by dim(x). The expression is
dim(z) — dim(x) = (no (T — 1) + n.T) — n,T, (3.8)

which for the same numeric values mentioned for proposition 3 yields 196 (theoretical covariance
392). The observed NIS distribution is shown in Figure 3.3; CNIS remained low (0.053066) and

results are consistent with finite-sample deviations.
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Linear NIS per run: q=1.000, R=2.000, DOF=196, CNIS=0.053066
variance=413.08, mean=195.87
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Figure 3.3: NIS values for the linear system under non-ideal conditions (Proposition 4).

Covariance discrepancies and implications (linear). Although mean values of the statistics
closely match theory, the empirical covariance occasionally differs from the theoretical covariance
by more than would be expected from sampling noise alone. Such discrepancies suggest that one
or more Gaussian assumptions (for example, the distribution of measurement or process residuals)
might not fully hold in the generated ensembles. This observation does not imply an implementa-
tion error: the factor-graph estimator and its weighting by Q and R are functioning as intended,
and the mean behaviour is consistent with expectation. However, the mismatch in covariance lim-
its the strength of any claim that the system is fully statistically functional in the strictest sense.
A more detailed Monte Carlo diagnostic (convergence with Pearson tests) is therefore necessary to

determine whether residuals are Gaussian and to guide any modelling changes.

3.3 Nonlinear model

The nonlinear section now describes only the differences relative to the linear model; where no
difference is stated the linear model treatment (state vector, measurement model, dimensionality

expressions, and the NIS/NEES testing procedure) applies unchanged.

3.3.1 System model differences

The nonlinear constant-turn model uses the same state vector xi = [z, y, v, vy]T but a nonlinear

transition:
Xk = f(xk:—lvw) + Vi, (39)
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with v
Ty + — [cos(@k + wAt) — cos(@k)}

Yy — — [sin(@k + wAt) — sin(Gk)]

f(xp,w) = w ,
v cos(f + wAt)
vsin(f + wAt)
where v = ,/v2 +vZ and 0} = atan2(v,,v,) and w is used as the control input ug. Iterative

optimisation (e.g. Gauss—Newton) is required to solve the resulting nonlinear least-squares problem

inside the factor graph.

3.3.2 Process covariance for the CT model

To reflect rotational dynamics the CT process covariance is formed by rotating the CV covariance
into the turning frame, effectively mapping the covariance of the observation correctly in the world

frame.. Define the planar rotation

A s —sinf
6 — w?t, R(6) = [‘;’ne o ] . T(0) = diag(R(9), R(6)).
Then
Qor(V, At,w) = T(0) Qov(V, At) T(6)". (3.10)

Each nonlinear process factor therefore uses the rotated covariance Qcr computed with the local
w and At.

3.3.3 Observation model (unchanged)

Measurements remain Cartesian position only and use the same linear measurement model z; =
Hx;, + wy, with H and R as in (3.4)—(3.5). This choice keeps the comparison between linear and

nonlinear dynamics focused on the propagation rather than sensing.

3.3.4 Data generation (nonlinear)

Nonlinear trajectories were generated using the same baseline parameters as the linear case (V = 1,
0?2 =2, T =100, N = 500 runs) but with the constant-turn dynamics. Each trajectory starts from
the same initial conditions and follows the nonlinear state update xj = f(xg—1,w) + v with turn
rate w = 0.1 rad/s. Process noise was sampled from vi ~ N (0, Qcr(V, At,w)) using the rotated
covariance matrix, while measurement noise remained unchanged from the linear case.

The nonlinear data generation ensures consistency between the true dynamics and the factor
graph model assumptions, providing a fair baseline for evaluating estimator performance under
curved motion. The same random seeds were used across linear and nonlinear experiments to

enable direct comparison of consistency metrics.

3.3.5 Trajectory example (nonlinear)

A representative CT trajectory demonstrating curvature and the effect of Qcr is shown in Fig-
ure 3.4. The figure is intended to give intuition for how turning affects the spread of ground-truth

trajectories relative to the CV case.
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Nonlinear Trajectory (run 0)
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Figure 3.4: Representative CT trajectory with process and measurement noise (single Monte Carlo

run).

3.3.6 Nonlinear ground-truth tests

Ground-truth Monte Carlo tests were performed with the same baseline parameters as the linear
experiments, Section 3.2.6. Because the measurement model and the dimensionality bookkeeping
(dim(z), dim(z) — dim(x)) are unchanged, the same theoretical degrees-of-freedom expressions
apply (see (3.7) and (3.8)).

Proposition 3 (ideal conditions). The NIS distribution under ideal conditions is plotted in
Figure 3.5 and is close to theory; this is expected since the same measurement model and noise

seeds were used to compare methods.

Nonlinear NIS per run: g=1.000, R=2.000, DOF=596, CNIS=0.049929
variance=1134.56, mean=596.32
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Figure 3.5: NIS values for the nonlinear system under ideal conditions (Proposition 3).
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Proposition 4 (non-ideal conditions). Under non-ideal initialisation the nonlinear case shows
a slightly larger observed covariance (approximately 413.99 vs theoretical 392), and CNIS=0.055313.
These small deviations are consistent with finite-sample effects and the additional optimisation

complexity introduced by the nonlinear dynamics (Figure 3.6).

Nonlinear NIS per run: g=1.000, R=2.000, DOF=196, CNI5S=0.055313
variance=413.99, mean=195.86
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Figure 3.6: NIS values for the nonlinear system under non-ideal conditions (Proposition 4).

Covariance discrepancies and implications (nonlinear). As with the linear experiments,
the nonlinear runs show occasional covariance deviations larger than expected from sampling alone.
Because the nonlinear propagation and optimisation can amplify non-Gaussian effects, these dis-
crepancies further motivate an explicit examination of the residual distributions. The practical
implication is the same: while the estimator is operating as intended (mean statistics are close
to theoretical values), the covariance mismatch weakens any claim of full statistical functionality
without additional diagnostics. The following chapter therefore contains targeted Monte Carlo
analyses to determine whether residuals are non-Gaussian and, if necessary, to recommend model

or algorithmic adjustments.

3.4 Summary and discussion

This chapter has presented the 2D tracking problem used to evaluate the factor-graph estimator
and the baseline configuration for experiments. The main points are:

e The state is x = [z,y,v;,v,]". Both systems use Cartesian position measurements z;, and a

measurement covariance R = o2Is.

o The linear model is the constant-velocity (CV) formulation with discrete-time update xj =
Fxj;_1 +Buy + vi. The matrices F and B are the standard constant-velocity transition and

input matrices, and process uncertainty is modelled by Qcv(At; V).
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e The nonlinear model is the constant-turn (CT) formulation. It shares the same state and
measurement model; its transition is nonlinear, x; = f(xx_1,w) + Vg, and the process

covariance is obtained by rotating the CV covariance: Qor = T(0)QcvT(6) .

e Process factors in the factor graph use residuals of the form xj; — (Fxx—1 + Bug) (or the
nonlinear analogue) weighted by Q. Measurement factors use residuals z; — Hxj weighted
by R. These covariances control the relative influence of dynamics and observations in the

optimisation.

e Ground-truth Monte Carlo tests (N = 500 runs) show that mean NIS/NEES values align
closely with theoretical expectations for both linear and nonlinear systems. This indicates
the estimator and the chosen covariance parameterisations behave as intended under the

baseline conditions.

A notable caveat from the ground-truth experiments is that the empirical covariance of the y2-
type statistics sometimes departs from the theoretical covariance by more than sampling variability
would predict. This discrepancy suggests the possibility that one or more Gaussian modelling
assumptions (in particular the Gaussianity of process or measurement residuals) may not hold
exactly for the generated ensembles. While the estimator itself appears to function correctly
(mean statistics are consistent with expectations), the covariance mismatch weakens any claim of
full statistical functionality in the strictest sense.

To investigate this, the following chapter contains targeted Monte Carlo diagnostics to assess
whether residuals are Gaussian. The experiments that follow (grid search and Bayesian optimisa-
tion over V and o2) therefore build on the working baseline established here and throughout the

rest of the experiments.
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Chapter 4

Experiments

This chapter builds on the ground truth validation presented in Chapter 3, where the system
was shown to function as intended. The focus here shifts toward exploring parameter tuning and
robustness. Starting with a simple blanket search to visualise the CNIS values surrounding the
true values of V and o2. This is followed by applying BO to more efficiently identify the optimal
V and o values. Finally, stress-testing and refinement experiments, including hyper-parameter

variation and adjustments to the factor graph setup, to further evaluate and improve the method.

4.0.1 Correcting Initial Assumptions

During the earlier studies in this section, it became apparent that the results were returning
seemingly random V and o? values. Regardless of adjustments made to the BO or grid search
experiments, the outcomes varied drastically within each trajectory length. In several cases, the
estimates were not only implausible but appeared effectively random. This was further evident in
Chapter 3 where the covariance didn’t line up with the theoretical covariance when using the ground
truth runs. Closer inspection revealed that the number of Monte Carlo runs—although initially
assumed sufficient—was likely too low to produce statistically stable results. This motivated the

following Section 4.1, which tests whether the original choice of 500 runs was truly adequate.

4.1 Monte Carlo Run Convergence Analysis

Monte Carlo (MC) evaluation underpins the consistency testing framework used throughout this
dissertation. As with any stochastic method, the reliability of results depends critically on the
number of independent trials N. If N is too small, the statistics may not approximate their true
distributions, leading to misleading conclusions. This section investigates how N influences the
stability of the CNIS measure, and related statistics, in order to establish a practical guideline for

simulation experiments.

Motivation

In preliminary experiments, unusual behaviour was observed in the CNIS cross-sections for Propo-
sitions 3 and 4. Theory predicts that plotting CNIS against V and o2 (the scalar terms in the
covariance matrix structures) should yield a clear “valley” structure. However, with N = 500 runs
the cross-sections produced a wide, flat-bottomed ‘U’ shape (Fig. 4.1). Decomposing CNIS into its

two logarithmic components, mean and variance, confirmed that instability in the separate terms
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was responsible for this behaviour. Such results indicate that CNIS values from earlier experiments
were not representative of their underlying x? distributions. It was therefore hypothesised that

increasing N would correct the behaviour, motivating the following convergence study.

CNIS Cross.Sections (Nonlinear - Proposition 3 CNIS Cross.Sections (Nonlinear) - Proposition 4

Proposition 3: Lock Q = 1.000 (sweep R) Proposition 3: Lock R = 2.000 (swieep Q) Proposition 4: Lock Q = 1.000 (sweep R)

Proposition 4: Lock R = 2.000 (sweep Q)

Proposition 3, M = 500 (bad alignment). Proposition 4, M = 500 (bad alignment).

Figure 4.1: CNIS cross-sections for Proposition 3 and 4 at insufficient N = 500 Monte Carlo runs.

4.1.1 Experimental Setup

To systematically study convergence, the number of Monte Carlo runs N was varied from 25 to

30,000 in increments of 25. For each N, the following quantities were computed and stored:

o (%)
s (52

e The CNIS metric from equation 2.22

e The log-mean term of NIS,

e The log-variance term of NIS,

This approach makes it possible to directly observe how the statistics stabilise at the ground-
truth values of V and o? from the data generation component in section 3. While such reference
trajectories are not available in real-world deployments, they can be accessed in simulation, en-
abling validation of convergence behaviour against known distributions. The aim here is not to
prescribe a universal N for practice, but rather to determine how many runs are required in

simulation for stable, interpretable results.

4.1.2 Data Generation

4.1.3 Results for 7' = 100

Using a trajectory length of T" = 100, a dataset of 30,000 Monte Carlo runs was generated. The
script iteratively evaluated subsets, starting with the first 25 runs and increasing in steps of 25,

each time using the ground-truth values V = 1.0 and o2 = 2.0.
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Nonlinear NIS Statistics Convergence (Proposition 3)

Nonlinear NIS Mean Convergence (Proposition 3) Nonlinear NIS Variance Convergence (Proposition 3)
= NIS Mean = NIS Variance
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Figure 4.2: Proposition 3: mean/variance behaviour of NIS, T' = 100.

Nonlinear CNIS Convergence Analysis (Proposition 3)
Nonlinear CNIS Convergence (Proposition 3)

0 5000 10000 15000 20000 25000 30000
Number of Runs

Figure 4.3: Proposition 3: CNIS convergence, T' = 100.

Figure 4.2 shows the two log terms across iterations. It is clear that the original choice of N =
500 was insufficient: with too few runs, the mean and variance values vary widely between number
of Monte Carlo runs. Focusing on the CNIS measure, which combines these terms, highlights how
strongly under-sampling distorts the results.

Both graphs begin to plateau around N = 5000 runs, though they do not stabilise fully until
approximately N = 25,000. Since increasing IV greatly extends runtime, a compromise of N > 5000

appears sufficient for practical data collection.
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Nonlinear NIS Statistics Convergence (Proposition 4)

Nonlinear NIS Mean Convergence (Proposition 4) Nonlinear NIS Variance Convergence (Proposition 4)
440
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Figure 4.4: Proposition 4: mean/variance behaviour of NIS, T' = 100.

Nonlinear CNIS Convergence Analysis (Proposition 4)
Nonlinear CNIS Convergence (Proposition 4)
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Figure 4.5: Proposition 4: CNIS convergence, 7' = 100.

For Proposition 4 the behaviour is more erratic. Although the relative changes mirror Propo-
sition 3, the smaller degrees of freedom lead to larger relative fluctuations. Here, convergence is
delayed until closer to N = 10000, and even after plateauing, the CNIS curve exhibits noticeable
oscillations. Overall, Proposition 4 requires a larger number of runs for stable results.

To further confirm these observations, the NIS noise was mapped as a probability density
function for N = 500 and N = 10000.
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Nonlinear NIS histogram for g=1.000, R=2.000 (CNIS=0.055313)

Pearson GOF (best test): stat=13.90, dof=18, p=0.736

e Observed
e Expected (chi-square)

Count per bin

160 170 180 190 200 210 220 230
200 NIS (chi2)
NIS (chi2)

p test results, M = 500.
NIS distribution, M = 500. Carsonl Lest Testns,

Nonlinear NIS histogram for g=1.000, R=2.000 (CNIS=0.007383)

Pearson GOF (best test): stat=35.34, dof=25, p=0.0822
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Figure 4.6: Empirical Probability Density Function of NIS and Pearson test overlays for insufficient
(M = 500) vs sufficient (M = 10000) Monte Carlo runs.

The NIS density functions in Fig. 4.6 reinforce the findings. With N = 500, the distribution
deviates significantly from the theoretical x? reference, and the Pearson test rejects consistency,
reporting a coefficient of 0.736. By contrast, with N = 10,000, the histogram closely matches the
Gaussian y? curve and the Pearson test confirms consistency, with a coefficient of 0.0822. This
demonstrates the risks of under-sampling.

(CNIS Cross-Sections (Nonlinear) - Proposition 3 CNIS Cross-Sections (Nonlinear) - Proposition 4

Proposition 3: Lock Q = 1.000 (sweep R) Proposition 3: Lock R = 2.000 (sweep Q)

Proposition 4: Lock Q = 1.000 (sweep R) Proposition 4: Lock R = 2.000 (sweep Q)

Proposition 3, M = 10000 (good alignment). Proposition 4, M = 10000 (good alignment).

Figure 4.7: CNIS cross-sections for Proposition 3 and 4 at sufficient N = 10,000 Monte Carlo runs.

With the increased sample size, the cross-sections now exhibit the expected ‘V’ shape rather
than the flat-bottomed ‘U’. This sharper valley structure should improve the performance of later
BO experiments by providing a clearer optimisation surface.

Effect of Shorter Trajectories

To test whether trajectory length affects the required N, experiments were repeated with shorter
trajectories (7' = 20).
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CNIS C Analysis ( ition 3) Nonlinear CNIS Convergence Analysis (Proposition 4)
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Figure 4.8: Convergence of CNIS, mean NIS, and variance of NIS for shorter trajectories (' = 20).

As shown in Fig. 4.8, convergence occurs somewhat earlier: around N = 3000 for Proposition 3
and N ~ 8000 for Proposition 4. However, the estimates are noisier overall compared with the
T = 100 case. This is expected—fewer degrees of freedom increase the relative change of the NIS,

making the estimates less stable.

Summary

This analysis shows that the original choice of N = 500 was inadequate for reliable CNIS eval-
uation. Stable convergence typically requires on the order of N = 5000 for Proposition 3 and
N = 10,000 for Proposition 4, depending on trajectory length. Although computationally ex-
pensive, this is justified in simulation studies where accurate consistency validation is essential.
For the remainder of this dissertation, N = 10,000 was used for all experiments to ensure con-
sistency across Propositions 3 and 4. These findings provide a solid foundation for the Bayesian

optimisation stage, ensuring that parameter tuning is based on trustworthy statistical evidence.

4.2 Experiment 1: Dense Cost Landscape in ), R

The first experiment is designed to map the entire cost landscape of the CNIS metric as a function
of the process noise covariance scaling term, V', and the measurement noise covariance scaling

2. This “blanket search” provides a detailed visualisation of the problem space, serving

term, o
as a ground truth against which more sophisticated optimisation techniques can later be assessed.
By characterising the topology of this surface, its smoothness, convexity, and location of minima,
we can better interpret the behaviour of the tracking system and the performance of subsequent

optimisation algorithms.

4.2.1 Setup

The experimental procedure consists of an exhaustive evaluation over a two-dimensional grid of
hyper-parameters. The grid spans process noise intensity V' and measurement noise variance o2,

with a dense resolution of 50x50 points, yielding 2,500 parameter pairs in total. This resolution
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was chosen to balance computational cost against the structure of the cost surface. The ranges for
V and o2 were selected broadly enough to contain the expected optima, guided by the ground truth
parameters used in data generation. In a practical study, the initial values of the noise covariances
should be estimated prior to this step as a starting range. Given the true parameters, the ranges
are V = (0.01,2.0) and o2 = (0.01,4.0). These ranges should provide sufficient rough estimates to
capture the area around the true tuning paramters.

For each (V,0?) pair, the following steps are carried out:

1. A factor graph model is configured with process noise covariance ) and measurement noise
covariance R.

2. The model is evaluated against a dataset of 10,000 pre-generated Monte Carlo trajectories,

with runs executed in parallel to maintain computational feasibility.

3. For each full set of trajectories, the CNIS value is computed. Both Proposition 3 and Propo-

sition 4 are considered in different plot instances, providing consistency checks under ideal
and non-ideal conditions.

4. From the resulting distribution of 2,500 CNIS values, the minimum is identified, giving an
approximate estimate of the corresponding V' and o2.

Throughout this experiment a constant time step of dt = 1.0 is used, ensuring that the () matrix,
which depends on the time interval, remains consistent across all factors and runs. This controlled
setup provides a clean baseline for analysing how the static noise parameters (V,o?) shape the
CNIS landscape. The final output is a 2D matrix of CNIS values, visualised as a heatmap.

4.2.2 Results and Discussion

4.2.2.1 Linear Model.

The dense grid search for the linear constant-velocity model reveals a diagonal valley structure in
the (V, %) plane.

Proposition 3. The optimum occurs at (V,0?) = (0.980102, 2.12292) with CNIS = 0.00615216,
close to the ground truth (1.0,2.0).

Linear Grid Search Trials (3D) Linear Dense Grid - Best: Q=0.980102, R=2.12292, CNIS=0.00615216
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Figure 4.9: Linear model, Proposition 3: 3D  Figure 4.10: Linear model, Proposition 3: 2D
cost surface using a log scale key for better = heatmap using a log scale key for better viewing
viewing of the valley. of the valley.
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The surface forms a smooth curved valley with “tails” roughly aligned with the true V and
o? values, converging towards a minimum close to ground truth. In log space, colour scaling
exaggerates gradients, but in absolute terms the region around the optimum is relatively flat with
even the tails differing only slightly from the centre. Based on the shape, 02 is more sensitive to
CNIS variation than V. The tuning parameters are not located exactly at the apex of the curve but
are skewed towards the V axis. This means small movements along the valley ridge affect o2 more
strongly than V. The parameters identified by the minimum CNIS should therefore be viewed as
rough estimates of the true optimum. The limited resolution of the grid is partly responsible. This

ridge requires finer sampling to pinpoint the true values accurately.

Proposition 4. Here the optimum shifts to (V, 0?) = (1.18408, 1.87808) with CNIS = 0.00639314.

Linear Grid Search Trials (3D)

Linear Dense Grid - Best: Q=1.18408, R=1.87808, CNIS=0.00639314
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Figure 4.11: Linear model, Proposition 4: 3D  Figure 4.12: Linear model, Proposition 4: 2D

cost surface using a log scale key for better = heatmap using a log scale key for better viewing
viewing of the valley of the valley

In the case of proposition 4 the valley is longer and flatter, meaning CNIS varies little along the
ridge. This elongation reduces the likelihood of identifying the exact tuning parameters. Unlike
Proposition 3, sensitivity is reversed: small movements along the ridge affect V more strongly than
o2. The flatness again implies that the reported optimum is only approximate, since nearby points
produce equally good scores.

4.2.2.2 Nonlinear Model.

The nonlinear constant-turn system (w = 0.1rad/s) produces qualitatively similar diagonal valleys
in (V,0?).

Proposition 3. The minimum occurs at (V,0?) = (0.980102,2.12292) with CNIS = 0.00615216.
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Asin the linear case, the valley converges near the true parameters. The flatness of the optimum
shows robustness to small mis-specifications in V' or o2. Notably, the linear and nonlinear models
yield identical results for Proposition 3, since the noise injected into each trajectory is the same

and the ideal initialisation minimises differences.

Proposition 4. The optimum is (V,0?) = (0.939306,2.04131) with CNIS = 0.683499.
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e
True (q,R)
10! O LR 10!

1754
1.50

125

o
2

1.00

(LB fouRsisuod) 2

Q (Process Noise Intensity)

_.
2
C (Consistency Metric, log scale)

C (Consistency Metric, log scale)

,_.
2

0.50

10-? 05 10 15 2.0 2.5 3.0 3.5 40

® a0 175 @t R (Measurement Noise Variance)
2.00 Q
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Here the valley is longer and even flatter than in Proposition 3, with many (V,0?) pairs pro-
ducing almost identical CNIS scores. Unlike Proposition 3, the linear and nonlinear results are
not identical: although the same noise seeds are used, the nonlinear dynamics introduce small
differences during the optimisation step, leading to slightly different optima.

4.2.2.3 General Observations.

Across both models and propositions, the CNIS landscapes consistently form diagonal valleys,
reflecting the trade-off between V and o2. Increasing V (process noise) can be offset by reducing

0?2 (measurement noise), and vice versa, since both control effective uncertainty in the system.
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Along the ridge, the system achieves a similar balance between process noise and measurement
noise, producing near-constant CNIS values with only a gradual dip towards the true parameters.

The difference between Propositions 3 and 4 is primarily due to initialisation. In Proposition 3,
sensitivity lies more in o, which makes sense given the ideal start from (0, 0): measurement noise
dominates since no initial process noise is present. In Proposition 4, with random initialisation,
the system relies more heavily on process noise, making V more influential, aligning with the

statements made in section 2.4.4.

4.2.2.4 Summary and Motivation for Bayesian Optimisation.

In summary, the grid search successfully reveals the valley structure of the CNIS surface but is
computationally expensive and limited in resolution. The flat ridges, especially in Proposition 4,
mean that small amounts of numerical noise or grid spacing can shift the reported optimum, even
though the underlying surface is genuinely flat. This explains the slight displacements of optima
observed across runs.

These findings motivate the use of Bayesian Optimisation in the following section. By adap-
tively concentrating evaluations in promising regions, Bayesian Optimisation can achieve finer
resolution along the ridge without exhaustively sampling the entire space. This both reduces com-
putational cost and improves our ability to distinguish subtle local minima, while also clarifying
the identifiability of (V,o?).

4.3 Experiment 2: BO parameter search of V, o2

Following the previous section, experiment two aims to counter the drawbacks of an exhaustive
search by striking a balance between detail and computational cost. Previous Sections tested
on both the linear and non-linear setup, however, as it has been proven both work and produce
simmilar results, time will only be spent on the non-linear setup for the parameter exploration.
Firstly, testing the acquisition functions EI and LCB are the first priority. The goal of this short
first half of the experiment is to determine which results leads to a better CNIS result and to assess

the general shape of the search.

4.3.1 Setup

e Search space: (V,0?) optimised in linear space with bounds matched to the grid experiment

for comparability.

e Objective: CNIS calculated across 10000 Monte Carlo trajectories. Each candidate is
mapped to (Q,R), the factor graph is solved, and CNIS is computed under the selected

proposition (either Proposition 3 or Proposition 4, as configured).

e Acquisition function: EI and LCB separately tested in order to determine best likely
acquisition function. Both functions also have a force jump parameter of 10 so that they

would leave local minima if stuck for too long, reducing chance of incorrect minima.

e Surrogate model: Gaussian Process with Matérn-5/2 ARD kernel; no output normaliza-

tion.

e Evaluation budget: n;,;; = 100 initial samples and ngo = 750 BO iterations (approxi-

mately 850 total evaluations).
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e Data Input: trajectories consistiting of the base hyper parameters, At = 1.0, set seed to

the same as previous sections, V = 1.0, 02 = 2.0, turn rate w = 0.17ad/s.

e Outputs: Report best (V,02,Cy1s), and runtime.

e Repetitions: Repeated 3 times, tabulating all results and plotting the run with the lowest

CNIS value.

Implementation (Pseudocode).

A high-level pseudocode of the BO implementation is given

below, describing the outputs of the script for the non linear system.

Algorithm 1: Bayesian Optimization for Tuning (V, o)

Input: Initial parameters (V, o), number of iterations N
Output: Optimized (V*,c*)

Initialize Gaussian Process surrogate GP;

fori=1to N do

Select (V;,0;) using acquisition function «;
Evaluate CNIS at (V;, 0;) with Monte Carlo sampling;
Update GP with (V;, o;, CNIS);

end

return best (V*,o*) found;

4.3.2 Comparison of EI and LCB Acquisition Functions

Both functions were applied to Proposition 3 and Proposition 4 using trajectories of length T" = 100.

Each setup was repeated three times to check for robustness.

The following results combine

tabulated statistics with visualisations of the optimisation surfaces.

4.3.2.1 Proposition 3: ideal case

Table 4.1 reports the EI results for Proposition 3, while Figure 4.17 shows the corresponding

optimisation surface.

Table 4.1: EI results for Proposition 3 (T = 100).

Run Vv o? CNIS Mean NIS  Var NIS  Time [s]
1 1.00617 2.00855 0.0049321 593.160 1192.186 613
1.00049 2.03066 0.0051505  593.226  1192.579 608
1.01434 1.97659 0.0050835  593.212  1192.471 619
GT 1.00000 2.00000 0.0119351  596.441  1205.419 -
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CNIS over Q(V) and R(o?): min CNIS=0.004932 at Q=1.006, R=2.009 (0=1.417)
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Figure 4.17: The EI optimisation surface using BO to find the best value of CNIS under proposition
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3 with a trajectory length of T' = 100.

The EI search traces the main ridge of the optimisation valley but also steps up the walls in a
few places. This gives a good mix of refinement and wider coverage, with CNIS values as low as
0.004932, with V and o2 values extremely close to the ground truth. The broader spread comes
from the force jump mechanic, which stops the optimiser from sitting in one part of the valley. EI
naturally complements this approach because it assigns high acquisition values to regions where

uncertainty is large and the mean prediction suggests potential improvement, creating a principled

T T
150 175

T
2.00

exploration-exploitation trade-off that prevents premature convergence.
Table 4.2 and Figure 4.18 show the results under LCB.

Table 4.2: LCB results for Proposition 3 (7" = 100).

C (Consistency Metric)

1071

Run Vv o? CNIS Mean NIS ~ Var NIS  Time [s]
0.99520 2.05380 0.0051826 593.110 1192.383 621
1.03435 1.90924 0.0055071 592.799 1192.145 609
0.99687 2.04646 0.0051512 593.142 1192.410 609

GT 1.00000 2.00000 0.0119351 596.441 1205.419 -
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CNIS over Q(V) and R(o?): min CNIS=0.005151 at Q=0.9969, R=2.046 (0=1.431)
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Figure 4.18: The LCB optimisation surface using BO to find the best value of CNIS under propo-
sition 3 with a trajectory length of 7" = 100.

LCB, on the other hand, stays tighter along the ridge and the search path looks shorter. This
is because LCB mostly favours points with low predicted mean, so on a flat valley it keeps re-
sampling in the same region. Unless x is pushed higher, the added uncertainty at the walls is not
enough to pull it away. The force jump has less effect here too, since most jump points score worse
than the valley floor under LCB. The minimum CNIS of LCB is 0.005151, slightly higher than EI
but practically the same. The main difference lies in the recovered parameters. The V' value is still
close to ground truth, but the o2 estimate drifts slightly further than in the EI case. This reflects
the sensitivity of the valley ridge, where even small shifts in V' can lead to larger variations in o2.

Overall, both methods work well in this ideal case, but EI spreads further and gives slightly

better coverage of the landscape. Now lets see if proposition 4 shows varied results.

4.3.2.2 Proposition 4: Misaligned case

For Proposition 4, both EI and LCB show degraded behaviour. Tables 4.3 and 4.4, together with

Figures 4.19 and 4.20, summarise the results.

Table 4.3: EI results for Proposition 4 (T = 100).

Run Vv o? CNIS Mean NIS  Var NIS  Time [
1.12991 1.90284 0.0013981 196.237 391.926 10645
1.14312  1.89494 0.0009512 196.176 392.022 10668
0.82187 2.18042 0.0006435 195.980 391.788 10614

GT 1.00000 2.00000 0.0073827 196.196 389.505 -
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CNIS over Q(V) and R(o?): min CNIS=0.0006435 at Q=0.8219, R=2.18 (0=1.477)
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Figure 4.19: The EI optimisation surface using BO to find the best value of CNIS under proposition

4 with a trajectory length of T"= 100.

Similar to Proposition 3, EI explores the ridge in detail but also climbs the “walls” of the

valley in places. The overall search pattern behaves the same, but with the pattern of proposition
4. The minimum CNIS drops much lower here, down to 0.0006435, but the recovered V and o2

are noticeably further from the ground truth. The reasons behind this will be discussed later in

section 4.3.2.3, but for now the focus is just on the shapes of the surfaces.

Table 4.4: LCB results for Proposition 4 (T' = 100).

Run Vv o? CNIS Mean NIS  Var NIS  Time ]
1.16414 1.88283 0.0007651  196.068  392.165 8581
0.82742  2.17158 0.0006776 196.116 392.033 8608
0.79728 2.21600 0.0017812  195.661  391.980 8594

GT 1.00000 2.00000 0.0073827  196.196  389.505 -
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CNIS over Q(V) and R(o?): min CNIS=0.0006776 at Q=0.8274, R=2.172 (0=1.474)
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Figure 4.20: The LCB optimisation surface using BO to find the best value of CNIS under propo-
sition 4 with a trajectory length of 7" = 100.

In both EI and LCB, the CNIS values stay very stable across runs, around 10~2 to 1073, even
though the recovered V and o2 vary a lot. This suggests the mismatch isn’t down to the acquisition
function itself, but something else driving the gap between the estimated and true parameters. The
overall shape of the LCB function is simmilar to that of the proposition 3 run, where the ridge has
more definition but it fails to find the best minimum between the two acquisition function.

Overall, both methods capture the general landscape, but EI edges out LCB. It returns slightly
lower CNIS values and shows a bit more exploration which is vital when searching a flat valley like

structure. For that reason, EI will be used as the default in the experiments to come.

4.3.2.3 Anomalous behaviour at 7" = 100

A striking feature across both acquisition functions is the anomalous behaviour observed for tra-
jectories of length T" = 100 in Proposition 4. The CNIS results were around an order of magnitude
smaller than those obtained at the ground-truth parameters, with “optimal” (V,0?) estimates
that deviate noticeably from (1,2). For example, under EI the optimiser located points near
(V,02%) = (0.82,2.18) and (1.14,1.89) with CNIS values on the order of 10~%, far below the base-
line ground-truth CNIS of 7.4 x 1073.

To check whether this effect was just due to one unlucky trajectory, the experiment was repeated
with a new random seed. The anomaly persisted, though the deviation was smaller. Table 4.5
shows one such re-run, where the optimiser again found (V, 02) values away from (1,2) that returned
CNIS values between 1.5-3.9 x 1074, still below the baseline of 1.7 x 1073 for that seed.
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Table 4.5: EI results for Proposition 4 with 7' = 100 under a different seed.
Run \% o? CNIS Mean(x?) Var(x?) Time [s]
1.04119 1.96594 0.0001503  196.011 392.037 7260
0.95607 2.03654 0.0001595  196.020  392.022 7419
1.04876 1.96081 0.0003867  195.964  391.921 7388
GT 1.00000 2.00000 0.0016688  195.929  391.489 -

The persistence of this effect across seeds shows it is not just random initialisation. Instead,
it suggests a structural property of the optimisation surface at 7' = 100. The cost landscape here
forms a broad, flat ridge where many (V,02) pairs that appear similar. Small fluctuations from
finite-sample noise can then carve out shallow dips just off the ridge, which look like true minima.
Bayesian optimisation latches onto these dips because they consistently report lower CNIS than
the ground-truth point, even though they are not genuinely better solutions.

In summary:
e The anomaly is reproducible across seeds, not just a one-off effect.

e The optimiser finds off-truth (V,0?) with deceptively low CNIS values due to ridge flatness

and surface noise.

e All recovered parameters remain near the ridge, confirming that the optimiser is tracking the

valley but being pulled toward spurious dips.

This behaviour raises doubts about relying on 7" = 100 alone: the CNIS metric here can give
artificially low scores at incorrect parameter values. A fuller trajectory-length study helps to put

this anomaly in context and shows how varying T changes the stability of the optimisation surface.

4.4 Experiment 3: Trajectory-length Study

Building on the EI-LCB comparison at T' = 100, Experiment 3 investigates how trajectory length
T influences the optimisation surface and parameter recovery, in the hopes of improving overall
results. The study focuses on the robustness of the CNIS objective, the mean and variance of NIS
and recovered parameters (V, o?) for trajectory lengths T' € {20, 50, 100,200} under Proposition 3

and Proposition 4.

4.4.1 Setup

Motivation and objective. The objective is to characterise how trajectory length modifies
the optimisation landscape (surface curvature and ridge flatness), the susceptibility to spurious
noise-induced dips, and the identifiability of the process/measurement parameters. The working
hypothesis is that some trajectory lengths produce broader, shallower minima, with a less defined
point to the ridge, which reduce identifiability and increase sensitivity to Monte Carlo noise. It is
also hypothesised that the two propositions will respond differently because they imply different

effective degrees of freedom.

Design and controls. The experimental configuration is aligned with Experiment 2 to permit

direct comparison:
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e System cases: Proposition 3 (near-ideal) and Proposition 4 (misaligned).

e Trajectory lengths: T € {20,50,100,200}. Shorter trajectories are formed as prefixes of

the T' = 200 dataset (this correlation is noted as an experimental caveat).
e Objective: CNIS computed via the same Monte Carlo budget used in Experiment 2.

e Bayesian optimisation: Expected Improvement (EI) is used as the acquisition function;
GP surrogate with Matérn-5/2 ARD kernel; BO budget and initialisation match Experi-

ment 2.

e Repetitions: Three independent BO repetitions (with the same distinct seed) per (Proposition, T')
pair. The best (lowest CNIS) run is reported along with the NIS mean and standard deviation

across repetitions where informative.

e Controls: Factor graph structure, solver tolerances, At, and parallel execution settings are

held constant.

e Outputs: recovered (V,o?), CNIS, mean/variance of NIS, runtime.

The important thing to note is that using prefixes of the whole trajectory helps with real world
implementation, reducing the amount of data required to collect, giving a more realistic way of

validating results.

Reproducibility notes. All seeds and runtime environment details are logged in the HDF5
outputs. Since shorter trajectories are prefixes of the 7' = 200 run, results at different T are not
statistically independent. Still, the comparison is useful as it shows how trajectory length affects

stability and parameter recovery.

4.4.1.1 Results

Proposition 3: Near-ideal case Table 4.6 shows the outcomes for Proposition 3 across the

four tested trajectory lengths.
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Table 4.6: EI results for Proposition 3 across trajectory lengths.
T Run Vv o? CNIS Mean NIS ~ Var NIS
200 1 1.01189 1.99489 0.007260  1187.914  2393.140
2 1.00943 2.00598 0.007047 1187.612  2392.021
3 1.01294 1.99145 0.007149  1187.791  2392.626
GT 1.00000 2.00000 0.014759 1196.248  2427.062
100 1 1.00617 2.00855 0.004932  593.160 1192.186
1.00049 2.03066 0.005150  593.226 1192.579
1.01434 1.97659 0.005083  593.212 1192.471
GT 1.00000 2.00000 0.011935  596.441 1205.419

50 1 1.01179 2.00490 0.007787  293.717 591.974
2 1.01483 1.99333 0.007791 293.717 591.972
1.03302 1.92848 0.008278  293.690 592.263

GT 1.00000 2.00000 0.017988  296.247 602.242

20 1 1.00121 2.01596 0.003965 115.551 232.019
1.00040 2.01832 0.004130 115.566 232.088

1.00399 2.00532 0.003906 115.551 231.993

GT 1.00000 2.00000 0.007388 115.959 233.638

The three runs for each T are very consistent. Comparing BO CNIS results to ground truth

CNIS gives ratios of about:

1.89 (T = 20),
2.31 (T = 50),
2.42 (T = 100),
2.09 (T = 200).

So BO finds parameters that cut CNIS by approximately a factor of two across all T'. Errors in V/
and o2 are small (MAPEs ~ 0.2-2.0%). Interestingly, T = 20 gives slightly better CNIS than longer
trajectories, probably because short runs don’t accumulate rare anomalies. Still, all CNIS values
are in the same 1072 range. This differs from the expectation that longer T increases the accuracy
as the absolute difference in NIS mean and covariance stay the same but the relative difference
decreases with the larger DoF. However the extra length also introduces more opportunities for

errors, which seems to balance the CNIS results out between varied lengths of trajectory.
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CNIS over Q(V) and R(g?): min CNIS=0.003906 at Q=1.004, R=2.005 (0=1.416)
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Figure 4.21: Proposition 3, T' = 20
CNIS over Q(V) and R(g?): min CNIS=0.004932 at Q=1.006, R=2.009 (0=1.417)
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Figure 4.23: Proposition 3, 7' = 100

Figure 4.25: A summary of all the different trajectory legnth BO studies under proposition 3,

ranging from T = 20, 50, 100, 200.

CNIS over Q(V) and R(0?): min CNIS=0.007787 at Q=1.012, R=2.005 (0=1.416)
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Figure 4.22: Proposition 3, T'= 50
CNIS over Q(V) and R(0?): min CNIS=0.007047 at Q=1.009, R=2.006 (0=1.416)
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Figure 4.24: Proposition 3, T' = 200

The surface plots (Fig. 4.25) also look very similar across T, suggesting trajectory length has
little effect on the overall outcome, at least up to T' = 200 for Prop 3.

Proposition 4: Misaligned case Table 4.7 gives the numbers for Prop 4.
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Table 4.7: EI results for Proposition 4 across trajectory lengths.
T Run 1% o? CNIS Mean NIS  Var NIS
200 1 1.00578 2.00108 0.002367  395.255 792.383
2 1.00179 2.00484 0.002241 395.196 792.165
3 1.00610 2.00153 0.002160  395.155 791.982
GT 1.00000 2.00000 0.004866  396.079 795.705
100 1 1.12991 1.90284 0.001398 196.237 391.926
1.14312  1.89494 0.000951 196.176 392.022
0.82187 2.18042 0.000643 195.980 391.788
GT 1.00000 2.00000 0.007383 196.196 389.505
50 1 0.99273 2.04302 0.012351 94.832 192.020
0.97240 2.06087 0.012492 94.815 191.986
1.02242 2.01922 0.012451 94.818 191.989
GT 1.00000 2.00000 0.027024 96.076 197.103
20 1 1.03015 1.97876 0.001379 35.965 72.030
1.04868 1.96592 0.001466 35.963 72.032
1.00795 1.99548 0.001218 35.957 71.998
GT 1.00000 2.00000 0.001717 35.975 72.074

Prop 4 is more sensitive to T. The GT/BO CNIS ratios are:

141 (T = 20),

219 (T =50),
GT/CNIS, i =~

11.64 (T =100 ) (outlier),

225 (T =200

The T' = 100 case is the clear outlier. BO drives CNIS very low but the recovered parameters
are way off (MAPE(V) =~ 15.0%, MAPE(c?) ~ 6.4%). By contrast, T = 200 gives both low
CNIS and very accurate parameters (MAPEs below 0.5%). So the T' = 100 result is most likely
a noise-induced dip that BO locked onto. This is a reminder that very small CNIS values aren’t
always trustworthy.

For the other lengths (T = 20, 50,200), the ratios to GT are similar, but the absolute CNIS
values differ more than in Prop 3. This makes sense: Prop 4 adds an optimisation step, which
seems to amplify differences between trajectories. In other words, the extra flexibility in the system

makes results more variable depending on 7.
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CNIS over Q(V) and R(g?): min CNIS=0.001218 at Q=1.008, R=1.995 (0=1.413) CNIS over Q(V) and R(g?): min CNIS=0.01235 at Q=0.9927, R=2.043 (0=1.429)
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Figure 4.26: Proposition 4, T'= 20 Figure 4.27: Proposition 4, T' = 50
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Figure 4.28: Proposition 4, T'= 100 Figure 4.29: Proposition 4, T' = 200

Figure 4.30: A summary of all the different trajectory legnth BO studies under proposition 4,
ranging from T = 20, 50, 100, 200.

The surfaces in Fig. 4.30 all look similar in shape, so the 7' = 100 anomaly seems down to

unlucky alignment in that specific prefix, not a fundamental difference in the landscape.

Cross-case synthesis and recommendations Two main takeaways:

1. Prop 3 is stable: Near-ideal init gives accurate, consistent recovery across all ' (MAPEs

small, GT/BO CNIS ratios ~ 2). Larger T averages out noise better.

2. Prop 4 is sensitive: Misaligned init increases sensitivity to the specific sequence and seed.

The T = 100 anomaly shows BO can exploit a dip that doesn’t generalise.

Practical points:

e Always repeat BO on multiple independent trajectories lengths (prefixes and independent

runs) and combine results (e.g. median) to avoid overfitting to quirks.
e Mixing trajectory lengths is a cheap validation check when data is scarce.

e Treat concerningly low CNIS values with caution: check parameter errors if ground truth is

known, or repeat runs if it isn’t.
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Overall parameter recovery Across all runs, the best (V,0?) estimates are consistently close
to ground truth. For Proposition 3, recovery is very stable: all trajectory lengths cluster near
(1.01,2.00), with the closest of all trajectories being T' = 20 with run 3, and run 2 from 7' = 200
followed closely behind. For Proposition 4, the most reliable recovery occurs at T = 200, with
both parameters within < 0.5% of the true values. In contrast, 7" = 100 produces misleading
estimates despite an apparently good CNIS, showing how strongly trajectory length interacts with
sequence-specific quirks. When runtime allows, T" = 200 is the safest choice, though T = 20 or
50 still give reasonable estimates in well-initialised setups, but results should always be confirmed

across multiple trajectories.

Runtime trade-offs Trajectory length also drives runtime. Shorter runs (7' = 20, 50) finish
quickly, which is convenient for rapid checks or when data is limited. Longer runs (7' = 200)
take more time but provide the most reliable results, especially for Proposition 4. The trade-off
is clear: shorter trajectories are efficient but more sensitive to noise, whereas longer ones average

out stochastic fluctuations at the cost of computational effort.

Design insight The appropriate trajectory length depends on the system and the setup. For the
tested 2D tracking setup, shorter trajectories are generally fine for proposition 3, since parameter
recovery is robust. For misaligned initialisation (Prop 4), longer trajectories are strongly recom-
mended to avoid BO locking onto spurious dips. In practice, combining several shorter prefixes

with one longer run offers a good compromise between efficiency and reliability.
Limitations and next steps Since shorter trajectories here are just prefixes of 7' = 200, some

T (notably T = 100) may be biased by sequence-specific quirks. The next step is testing variations

of At within a run, to see if time spacing itself shapes the optimisation surface.
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Chapter 5

Extension: Improvement and

Practical Performance

5.1 Extension 1: Variable Time steps

5.1.1 Setup

The previous experiments held the sampling interval At fixed throughout the trajectory, so that
the process noise covariance Q(At) in Eq. 3.3 and 3.10 was homogeneous across all steps. In this
experiment, the aim is to deliberately vary At within the same trajectory, alternating between
At € {1,5,10} under two mixture ratios: an even schedule (33:33:33) and a skewed schedule
(60:30:10) dominated by small time steps. The trajectory length is fixed at T' = 50, like the previous
test, however T' = 100 will also be tested to explore the effects on outlier data. Aside from this
change in step scheduling, the Bayesian optimisation procedure, objectives, and evaluation metrics
follow the same setup as before, ensuring results are directly comparable. It is important to note
that the length of the trajectory refers directly to the number of measurements taken, not the
length of the states. Figure 5.1.1 shows the number of measurements misaligning with the states

once At is increased

Figure 5.1: Example Markov Chain of the changing structure for the factor graph. This case uses

the 33:33:33 ratio alongside T' = 50, showing how measurements change

The motivation is to investigate how heterogeneous step sizes reshape the optimisation land-
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scape and affect identifiability of the process and measurement parameters. Since Q(At) grows
polynomially with At(cubic in position variance, quadratic in cross-terms, and linear in velocity
variance)longer steps magnify the effect of process noise, while shorter steps impose tighter con-
straints. When these are combined, some portions of the factor graph become strongly informative
while others are diffuse, producing an optimisation surface that is no longer a broad, flat valley
but instead contracts and steepens around certain directions in (V,0?). Put differently, large At
segments act as leverage points, exaggerating the penalty for mis-specified V', whereas small At
segments stabilise the trajectory and reduce Monte Carlo variance in CNIS/NIS. The two selected
ratios of the At schedules should show different trade-offs: the even ratio balances these influences,
while the skewed ratio concentrates on local stability with occasional large steps to enforce global
consistency.

This part of the experiment is motivated by general control-theory considerations around ir-
regular sampling. In practice, unevenly spaced measurements can make it harder to observe the
full state, which in turn can complicate parameter estimation. On the other hand, having more
frequent observations tends to reduce the variance of estimated parameters, simply because there’s
more information to work with [36, 9]. Thinking about it in the context of our mixed-At trajec-
tories, this gives us a way to explore how the balance of short and long intervals might affect how
well V and o2 can be recovered within the Bayesian optimisation setup. From this perspective,
we would expect that an even mix of At values might maintain the ridge-like structures we saw in
earlier experiments, while a skewed mix could sharpen the minima and make parameter recovery
slightly more precise, though perhaps more sensitive to noise.

All runs are made similarly to that in section 4.3. The only variation in terms of the BO and
grid search methods are the changing At structure. The same At schedule is applied consistently
across Proposition 3 (near-ideal initialisation) and Proposition 4 (misaligned initialisation) cases,
so that differences in outcome can be attributed to the interaction between initialisation and At

heterogeneity.

5.1.2 Results under Varying AT Ratios

Having established the baseline trajectory-length results, the next step is to test the effect of mixing
different AT values within a single trajectory. A trajectory length of T" = 50 is adopted as the
main case, since it strikes a balance between computational efficiency and the ability to refine
results. In the previous section, T' = 50 was shown to be the least well-performing of the otherwise
“sood” configurations, making it a natural candidate for improvement. Two mixing schedules are
considered: an even 33:33:33 ratio of short/medium/long AT, and a skewed 60:30:10 ratio. These
are compared against the constant-AT baseline. The focus is again on CNIS, NIS statistics, and
parameter recovery. The representation of the shapes shall be grid search plots as they do a better
job of showing the overall shape. BO experiments will be run alongside these but only tabulated

data will be shown.

5.1.3 Proposition 3: Invariance under AT

For Proposition 3, the introduction of mixed AT values produces no meaningful change compared
with the constant-AT baseline. Figure 5.2 shows the grid search heat maps for both the 33:33:33
and 60:30:10 schedules, alongside the constant-AT' case. All surfaces remain virtually identical,
confirming that the optimisation landscape is unaffected. This invariance arises because the model
and filter are perfectly matched: the discretisation terms F(AT) and Q(AT) are both derived
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from the same continuous-time dynamics. As a result, the innovations remain properly whitened,

and the NIS expectation is governed only by measurement dimension.

 odlonlinear Dense Grid -Best: Q=1.0209, R=1.95969, CNIS=0.00980697

 odloniinear Dense Grid - Best: Q=1.0209, R=1.95969, CNIS=0.00980697

 odlonlinear Dense Grid - Best: Q=1.0209. R=1.95969, CNIS=0.00980697

w0

Figure 5.2: Grid search landscapes for Proposition 3, T' = 50: constant AT, 33:33:33, and 60:30:10.

Focussing on the true results now there are two things to take note of. Firstly they are very

similar to that of the constant At method in table 4.6, with only minor changes for both the

schedule ratios due to the randomness of the BO algorithm.

Table 5.1: Proposition 3, 33:33:33 ratio, T' = 50.

Run 1% o? C NIS Mean NIS Var Orig ¢ Orig R
0.99425 2.07605 0.008416 293.71 592.39 1 2
1.01522 1.99035 0.007955 293.79 592.28 1 2
1.00186 2.04361 0.008054 293.75 592.24 1 2

GT 1 2 0.01799 296.25 602.24 1 2

Table 5.2: Proposition 3, 60:30:10 ratio, 7' = 50.
Run \% o? C NIS Mean NIS Var Orig ¢ Orig R
1 1.01312 1.99998 0.007877 293.71 591.94 1 2
2 1.00045 2.05019 0.008000 293.71 592.14 1 2
3 0.99837 2.06005 0.008014 293.65 591.97 1 2
GT 1 2 0.01799 296.25 602.24 1 2

5.1.4 Proposition 4: Amplification and Shifts

In contrast, Proposition 4 shows much stronger changes when AT is mixed. At T = 50, the

optimisation surface becomes noticeably sharper and more amplified compared with the constant-
AT case.

 process Noise Intens

 odlonlinear Dense Grid - Best: Q=1.10249, R=1.95969, CNIS=0.0145584

goNonlinear Dense Grid - Best: Q=1.0209, R=1.95969, CNIS=0.0113959

10t

Cconsistency Metric,log

 odNonlinear Dense Grid - Best: Q=0.939306, R=2.20453, CNIS=0.016577

 (Consistency Metric log scale)

Figure 5.3: Grid search landscapes for Proposition 4, T' = 50: constant AT, 33:33:33, and 60:30:10.
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The shapes of the graphs vary drastically with variability in A¢. The clearest change appears in
the even ratio 33:33:33, which shifts the surface to look more like the Proposition 3 case: sensitivity
in V is reduced, while shifts in ¢2 dominate the structure. For the 60:30:10 split, the graph no
longer clearly favours either parameter. Instead, it creates a more balanced trade-off between V
and o2, with both showing similar sensitivities. On top of this, the overall valley bottom shrinks,
reflecting the underlying shift in shape.

These large shifts lead to very different experimental outcomes. Tables 5.3-5.4 show the nu-

merical results.

Table 5.3: Proposition 4, 33:33:33 ratio, T' = 50.

Run \% o? C NIS Mean NIS Var Orig ¢ Orig R
1.00339 2.04962 0.009367 95.21 192.21 1 2
1.00824 2.03226  0.008899 95.27 192.03 1 2
1.02224 1.96724 0.009271 95.18 192.13 1 2

GT 1 2 0.02225 96.15 196.02 1 2

Table 5.4: Proposition 4, 60:30:10 ratio, 7' = 50.

Run \% o? C NIS Mean NIS Var Orig ¢ Orig R
0.97595 2.11590 0.01408 94.66 192.00 1 2
0.97212 2.12588 0.01454 94.64 191.95 1 2
0.98947 2.08361 0.01412 94.67 192.04 1 2

GT 1 2 0.02969 96.04 197.70 1 2

The 33:33:33 ratio gives parameter estimates closest to the ground truth, while the 60:30:10 ratio
drifts further away. This suggests that skewed interval distributions reduce stability in recovery.
A plausible explanation is the mismatch between model and filter discretisations, which biases the
innovations. With moderate variability in AT, the ridge sharpens and recovery improves, but once
the distribution becomes skewed, the surface distorts.

Interestingly, for the more balanced 33:33:33 case, the overall CNIS is actually lower than in the
constant-AT setup. Table 4.7 shows that using the ground truth V and o2, the CNIS is 0.027024,
whereas the varied-At ground truth results gave 0.02225. By contrast, the skewed 60:30:10 ratio
performed worse, with a value of 0.02969. The BO-recovered parameters also show smaller CNIS
values under the even ratio. In effect, the balanced variability brings V closer to its true value
while still favouring o2, consistent with the shifted ridge structure described earlier. Since the
even ratio clearly improves recovery while the skewed version distorts it, the 33:33:33 case will
be carried forward for further testing at 7' = 100 to see if it helps mitigate the outlier behaviour

observed there.

5.1.5 Outlier Case: T'= 100 in Proposition 4

The T = 100 case in Proposition 4 was previously highlighted as an outlier. Figure 5.4 shows
that, similar to the T" = 50 case, introducing variability in AT shifts the surface to resemble

Proposition 3 more closely.
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Figure 5.4: Grid search landscapes for Proposition 4, T' = 100: 33:33:33 vs. constant AT.

On the grid search, the best parameter lies far from the true parameter, already pointing to

the poor behaviour that follows.

Table 5.5: Proposition 4, 33:33:33 ratio, 7" = 100.

Run \% o? C NIS Mean NIS Var Orig ¢ Orig R
1 1.12305 1.55032 0.001408 196.11 392.33 1 2
2 0.89377 2.63507 0.001251 196.23 391.96 1 2
3 1.11730 1.56849 0.002110 196.03 391.23 1 2
GT 1 2 0.02200 195.98 383.50 1 2

Here, the introduction of mixed AT amplifies the poor behaviour already present. CNIS values
increase across the board compared with constant AT, including at the ground truth, and the
surface shifts further away from the expected minimum. Outliers are magnified, leading to unstable
(V,0?) estimates (Table 5.5).

This essentially confirms that variability in AT can worsen performance when results are already
poor, making it harder to detect or correct issues. The fact that T = 100 was identified as an
outlier in Section 4.4 only compounds the problem, leading to highly unstable convergence of V'

and o2 away from the true values.

5.1.6 Summary

To summarise, introducing variable AT had little effect on Proposition 3, but led to amplified and
shifted behaviour in Proposition 4. The even 33:33:33 split generally improved recovery, whereas
skewed ratios tended to worsen stability. Outlier results could not be corrected, and were even
made worse. These findings show that while balanced variability can sharpen the optimisation
surface, it can also magnify poor behaviour when conditions are already unfavourable.

In the following section, CNIS-based measures are replaced with MSE, to examine whether im-
proving consistency through tuning actually impacts error in this factor graph estimation problem,

similar to Kalman Filters.
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5.2 Extension 2: Mean Squared Error Observations

Up to this point, evaluation has focussed on consistency-based measures such as NIS, NEES, and
their normalised variants. These have been central to the Bayesian optimisation experiments [8],
i.e. that improving consistency should indirectly improve accuracy. While this has been widely
discussed in the Kalman filter literature as using correctly tuned noise parameters is vital, it is not
obvious that the same link holds in the factor graph setting used here. This section therefore shifts

focus to accuracy directly, by measuring mean squared error (MSE) of estimated trajectories.

5.2.1 Setup

The setup mirrors the earlier grid search experiments, but with MSE replacing CNIS as the eval-
uation metric. A blanket search was performed across (V,0?) pairs, with average MSE computed
over 10,000 Monte Carlo runs. To make the results interpretable, three plots were produced at
T = 50:

e 2D heatmap showing raw MSE values.

e Thresholded heatmap collapsing all MSE > 1 to a single colour, highlighting the low-error

region.
¢ 3D surface showing the MSE landscape over the (V, 0?) grid.

In addition to these plots, a selection of parameter settings from earlier sections were re-tested
to assess whether tuning had an impact on MSE. The resulting table compares trajectory lengths
T € {20,50,100,200} across ground truth parameters, BayesOpt-tuned parameters (from both

propositions), and deliberately poor noise settings.

5.2.2 Results and Discussion

Figures 5.5, 5.6, and 5.7 show the T' = 50 results. The overall MSE surface is flat: almost
all reasonable (V,0?) values achieve errors well below 1. The thresholded plot emphasises that
the majority of the parameter space lies in this low-error regime, with only extreme noise mis-

specifications producing degraded performance.
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Figure 5.6: MSE heatmap, 7' = 50. Regions

Figure 5.5: MSE heatmap, T = 50. . .
with MSE > 1 are collapsed to a single colour.
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Figure 5.7: 3D MSE surface over (V,0?), T = 50.

Table 5.6: MSE results for the nonlinear model across different trajectory lengths and parameter
settings.

T GT Best Prop 3 Best Prop 4 Large Measurement Large Process
200  0.60447 0.604468 0.604468 9.29314 1.89557
100 0.614767 0.614767 0.619497 9.33039 1.90011
50  0.633578 0.633582 0.633626 9.39309 1.90294
20 0.688271 0.688272 0.688283 8.91858 1.90551

Table 5.7: MSE results for the linear model across different trajectory lengths and parameter
settings.

T GT Best Prop 3 Best Prop 4 Large Measurement Large Process
200 0.603196 0.603194 0.603194 9.48971 1.89546
100 0.613518 0.613518 0.618237 9.50112 1.90000
50  0.632351 0.632355 0.632401 9.48916 1.90283
20  0.687119 0.687120 0.687131 1.90540 1.90540

The tabulated averages confirm the graphical trends. For both the nonlinear (Table 5.6) and
linear (Table 5.7) models, the ground truth and BayesOpt-tuned parameters produce almost iden-
tical results across all T. Longer trajectories (e.g. T = 200) yield slightly lower MSE, consistent
with reduced estimator variance when more data are available.

The impact of deliberately poor parameter settings is immediately visible. Large process noise
consistently produces moderate degradation, with MSE values clustering around ~ 1.9. In contrast,
large measurement noise causes severe errors (~ 9); overwhelming the estimator and confirming its
greater sensitivity to mis-specified measurement uncertainty. This asymmetry is natural given the

true parameter setting (V, 0?) = (1,2): underestimating measurement precision penalises accuracy
more strongly than modest distortions in process modelling.
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Figure 5.10: 3D MSE surface over (V,o?), T = 100.

Perhaps most striking is the behaviour of the 7' = 100 case. Despite being identified as an outlier
in the consistency-based experiments (Section 4.4), its MSE is practically indistinguishable from the
other trajectory lengths. This demonstrates that even when consistency with the noise parameters
appear unstable, overall trajectory accuracy remains robust. In other words, consistency measures
may flag problematic convergence behaviour, but the estimator can still achieve low MSE.

A final comparison between linear and nonlinear cases shows only marginal differences. The
linear model tends to produce slightly lower MSE, which can be attributed to simpler dynamics and
less variability across trajectories, making estimation easier. The nonlinear constant-turn model
introduces more structural uncertainty, which inflates MSE slightly, but the differences remain
small overall.

Taken together, these results suggest that while Bayesian tuning is effective for improving
consistency, accuracy in terms of MSE is already well preserved across most of the parameter
space. Tuning matters far less for MSE than for CNIS in GPS based factor graph estimation,

though extreme mis-specification can still cause severe degradation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This dissertation has presented a comprehensive analysis of automatic tuning for factor graph-
based estimation using Bayesian Optimization (BO). The work demonstrates a proof-of-concept
for automatically tuning the noise parameters of a factor graph-based tracking system, providing
a significant advancement over manual tuning and brute-force grid searches.

A central contribution of this study is the validation of the intricate ”diagonal valley” structure
of the tuning landscape and the critical role of Monte Carlo convergence in obtaining a stable
objective function. It was shown that a sufficient number of Monte Carlo runs is essential for
reliable evaluation of the Consistent Normalized Innovation Squared (CNIS) metric. Specifically,
while preliminary experiments with N = 500 runs produced a flat and noisy landscape, stable CNIS
estimates for Proposition 3 required approximately N = 5,000 runs, and Proposition 4 required
at least V = 10,000 runs. Probability density function analyses and Pearson tests confirmed the
convergence of the NIS distribution to the expected x? distribution at these higher sample counts,
highlighting the statistical necessity for large simulation budgets.

The dense grid search across both linear and nonlinear models revealed a smooth, diagonal
”valley” in the CNIS cost surface, reflecting a fundamental trade-off between process noise inten-
sity (V) and measurement noise variance (02). This broad and flat valley indicates that multiple
(V,0?) combinations can achieve statistical consistency, explaining why Bayesian Optimization
can converge to low CNIS values that do not necessarily correspond to the ground truth param-
eters. This susceptibility to noise-induced strange minima behaviour, particularly evident in the
trajectory-length study at 7' = 100, illustrating a structural property of the optimization problem
rather than an algorithmic failure.

Despite successful CNIS minimization, meaning Q and R covariance matrix were adequately
found, the analysis revealed a near-zero correlation between CNIS and the estimator’s Mean
Squared Error (MSE) for the chosen system model. Dense grid search validation showed that
a wide range of parameter values, including ground truth and BO-tuned parameters, achieved
similarly low MSE. This indicates that the factor graph-based estimator is inherently robust and
that precise CNIS optimization is not strictly necessary to improve tracking accuracy, only ”good
enough” guesses are required, making sure that large inbalances between V and o2 aren’t picked.

This distinction underlines an important subtlety. Statistical consistency tests ensure that the
assumed noise models align with the observed innovation statistics, meaning the system “correctly”

identifies its noise parameters. While this is valuable for diagnosis and theoretical soundness, it does
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not necessarily translate into better tracking performance in practice. For the GPS tracking factor
graph studied here, estimator robustness meant that even imperfectly tuned parameters produced
similar MSE outcomes, limiting the practical impact of fine tuning consistency optimization.

Finally, the study explored the impact of variable timesteps. For Proposition 3 (ideal ini-
tialization with no optimisation), heterogeneous time intervals had minimal effect, based on the
fact the setup of the R parameter was not dependent on the time step. For Proposition 4 (mis-
aligned initialization + optimisation), variable timesteps amplified and shifted the CNIS landscape,
demonstrating the fragility of the tuning process under non-ideal conditions.

In summary, the dissertation establishes that while Bayesian Optimization is a powerful method
for automatically tuning factor graph parameters, reliance on a single consistency metric such as
CNIS may not suffice for practical accuracy. The results highlight the need for multi-objective

approaches and more robust, computationally efficient frameworks for real-world deployment.

6.2 Future Work

Based on the results of this project, several directions for future work can be identified. These aim
to improve both the performance of the tuning framework and its relevance to practical estimation

problems.

6.2.1 Multi-Objective Optimization

The difference observed between CNIS and MSE suggests that a single objective is not always
enough. A useful extension would be a multi-objective Bayesian Optimization (MOBO) approach,
which considers both consistency and accuracy at the same time. Instead of giving one ”best” set
of parameters, this would provide a set of trade-offs, allowing the choice of parameters to depend

on the priorities of a specific application.

6.2.2 Efficiency and Robustness

The framework in its current form is computationally expensive and at times sensitive to strange

minima behaviour. Two ways forward are:

e Multi-Fidelity Bayesian Optimization (MFBO): Using cheaper, lower-fidelity evalua-
tions (e.g., shorter runs or fewer Monte Carlo samples) to guide the search before confirming

candidates with more accurate evaluations. This could cut down overall cost.
e Noise-Aware Acquisition Functions: Developing acquisition functions that explicitly

handle noise and flat cost surfaces, helping avoid poor convergence.

6.2.3 Alternative Measurement Models

Another line of investigation would be to test the tuning method with different measurement
types. For example, replacing position measurements with range-bearing measurements changes
both the Jacobians and the structure of the noise covariance matrices. This would test how well

the approach generalises. Key questions include:
e How does the CNIS surface change when using range-bearing measurements?

e Does Bayesian Optimization remain effective at finding good parameter regions in this case?
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e How does the relationship between CNIS and MSE change with these measurements?

Testing such cases would show whether the method is flexible enough for a wider range of

estimation problems, including robotics and navigation tasks that rely on non-linear sensors.

6.2.4 Application to Real-World Problems

Finally, there are several ways this work could be pushed towards real applications:

e Non-Gaussian Noise: Real sensors often produce outliers or heavy-tailed noise, so relaxing
the Gaussian assumption could improve robustness, but comes with its own set of problems

as the theory described in chapter 2 relies on Gaussian distributed assumptions.

e Adaptive Tuning: Moving from an offline method to an online one could allow parameters
to adapt as conditions change. Reinforcement learning may offer one route, though this

brings new challenges for safety and stability.

e Multi-Sensor Fusion and SLAM: Extending the framework to multi-sensor or SLAM
problems would test scalability, since these involve larger parameter spaces. Multi-fidelity

ideas could again help to manage complexity.

Overall, these future directions would help to move the method from a proof of concept towards

a more general and practical tool for automatic tuning in factor graph-based estimation.
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Appendix A

An Appendix About Stuff

This appendix lists all the source code files used in this dissertation for the Bayesian optimization

experiments and factor graph tracking implementation.

A.1 C++ Source Files

e BO_Tracking Test_linear.cpp - Bayesian optimization implementation for linear tracking

systems

e BO_Tracking Test _Nonlinear.cpp - Bayesian optimization implementation for nonlinear

tracking systems
e collect nis_linear.cpp - NIS data collection utility for linear systems
e collect nis nonlinear.cpp - NIS data collection utility for nonlinear systems
e convergence_test_linear.cpp - Convergence analysis for linear tracking
e convergence_test_nonlinear.cpp - Convergence analysis for nonlinear tracking
e CrossSection_Tracking Nonlinear.cpp - Cross-section analysis for nonlinear systems

e Evaluate MSE Points_Linear.cpp - MSE evaluation at specific parameter points for linear

systems

e Evaluate MSE Points Nonlinear.cpp - MSE evaluation at specific parameter points for

nonlinear systems
e fg _class_tracking.cpp - Main factor graph tracking class implementation
e fg_class_tracking.h - Header file for factor graph tracking class
e GridSearch Tracking linear.cpp - Grid search optimization for linear systems
e GridSearch_Tracking Nonlinear.cpp - Grid search optimization for nonlinear systems

e GridSearch Tracking Linear MSE.cpp - Grid search minimising average position MSE for

linear systems

e GridSearch Tracking Nonlinear MSE.cpp - Grid search minimising average position MSE

for nonlinear systems
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e tracking gen data linear.cpp - Linear trajectory data generation
e tracking gen_data nonlinear.cpp - Nonlinear trajectory data generation

e 2D_h5_loader.h - HDF5 loaders for states and measurements

A.2 Configuration Files

e scenario_linear.yaml - Configuration parameters for linear tracking experiments

e scenariomnonlinear.yaml - Configuration parameters for nonlinear tracking experiments

All source code files are available in the project repository on github: https://github.com/WillTerry01/UCL-

Dissertation.
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