
Automatic Tuning for Factor Graph Based
Estimation using Bayesian Optimisation

William Terry 1

MSc Robotics and AI

Supervisor: Simon Julier & Nisar Ahmed

15 09 2025

1Disclaimer: This report is submitted as part requirement for the MY DEGREE at UCL. It is
substantially the result of my own work except where explicitly indicated in the text. Either: The report
may be freely copied and distributed provided the source is explicitly acknowledged
Or:
The report will be distributed to the internal and external examiners, but thereafter may not be copied or
distributed except with permission from the author.



Abstract

This dissertation addresses the persistent challenge of manual parameter tuning in factor graph-

based estimation systems. While the application of automated tuning methodologies has been

explored for Kalman filters, this work proposes to extend this approach to the domain of factor

graphs. The performance and statistical consistency of these estimators can be highly depen-

dent on the accurate selection of noise model parameters, a task that is often time-consuming,

subjective, and prone to error. This work proposes an automated tuning methodology utilising

Bayesian Optimisation (BO), a sample-efficient global optimisation technique. By employing a

Gaussian Process to model the relationship between the system’s tuning parameters and a chosen

performance metric, the BO framework intelligently selects the next set of parameters to evaluate,

thereby reducing the number of computationally expensive simulations. The proposed approach is

demonstrated to efficiently identify optimal and statistically consistent parameter configurations,

outperforming traditional manual tuning methods. The research validates the efficacy of Bayesian

Optimisation as a powerful tool for solving complex, non-linear tuning problems, paving the way

for more robust and reliable estimation in diverse applications such as robotics, Simultaneous

Localisation and Mapping (SLAM), and sensor fusion.
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Chapter 1

Introduction

1.1 Background and Motivation

Tracking is a fundamental capability in robotics, forming the backbone of autonomous navigation

and interaction with the environment. From household robots that clean and map rooms to

exploration robots navigating complex terrains such as caves or disaster zones, accurate tracking

ensures robots can localise themselves, plan motion, and interact safely with their surroundings [1,

2].

Despite its importance, reliable tracking remains a challenging problem due to sensor noise,

environmental uncertainties, and nonlinear system dynamics. Traditional approaches, such as

Kalman Filters [1] or Particle Filters [2], address some of these challenges but have limitations.

The Kalman Filter is a linear minimum mean squared error estimator, and while it is Bayes-optimal

in the linear Gaussian case, its applicability can be restricted in nonlinear or non-Gaussian settings.

Particle Filters, on the other hand, can cope with nonlinearities but often require a large number

of particles to maintain accuracy, which can be computationally expensive. Both approaches may

still face difficulties in long-term tracking or in high-dimensional, complex environments.

Factor graphs have emerged as a modern and flexible framework for robotic tracking [3, 4, 5]. By

representing the system as a graph of variables and factors, they allow a more natural representation

of complex conditional dependencies between system variables. This structure enables optimisation

methods to better access and combine information from multiple sources for state estimation. As

a result, factor graph-based tracking can handle nonlinearities more effectively than traditional

filters, integrate multiple sensor modalities, and scale to large problems [6].

While factor graphs provide a powerful framework, their performance can be influenced by

choices such as noise models, motion covariances, and solver parameters [7]. Selecting suitable

parameters can improve tracking accuracy and consistency, though factor graphs remain capable of

producing reasonable results even with default or approximate settings. This observation motivates

research into methods for systematically exploring and optimising these parameters in a principled

way.

1.2 Problem Statement

In robotic tracking, the accuracy and reliability of a system depend not only on the underlying

model but also on how parameters, such as noise covariances and solver settings, are selected [7].

Manual tuning is labor-intensive, requires domain expertise, and may not yield optimal results.
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This is particularly relevant for factor graph-based tracking, where high-dimensional, nonlinear

parameter spaces make systematic tuning challenging.

Existing automated tuning approaches, such as Bayesian optimisation applied to Kalman Fil-

ters [8], provide promising directions. However, they are limited by assumptions of linearity and

Gaussian noise, which restricts their applicability in complex, nonlinear robotic tracking problems.

Factor graph-based systems offer a more expressive framework, but automated tuning methods for

these systems are still an active research area.

The problem this research addresses is therefore: how can we systematically and automati-

cally tune factor graph-based tracking systems in robotics to improve accuracy, consistency, and

robustness across diverse environments and sensor setups?

1.3 Manual Tuning Methods and Historical Context

The foundation of parameter tuning in state estimation stems from early work on Kalman filters

and their extensions. Simon’s book on optimal state estimation [9] and Julier’s contributions to

unscented Kalman filters [10] established the theoretical basis for consistency evaluation, while

Bar-Shalom’s seminal work formalized statistical consistency conditions that remain fundamental

to modern estimation theory [11].

Early approaches relied heavily on manual parameter adjustment, where engineers would iter-

atively modify process and measurement noise parameters based on qualitative assessment of filter

performance. Grid search methods emerged as a more systematic alternative, involving exhaustive

exploration of parameter spaces to find optimal configurations [12]. However, these approaches

suffer from computational inefficiency and poor scalability to high-dimensional parameter spaces,

motivating the development of more sophisticated automated tuning strategies.

1.4 Project Objectives

The primary objectives of this project are as follows:

1. Design and implement a factor graph-based tracking system: Develop a tracking

system capable of estimating the state of a robot using sensor inputs such as Global Posi-

tioning System (GPS) and odometry. The system will be structured using factor graphs,

leveraging open-source libraries such as Georgia Tech Smoothing And Mapping (GTSAM)

or General Graph Optimisation (g2o) for efficient optimisation.

2. Investigate the use of Bayesian optimisation for tuning factor graphs: Examine

whether an approach commonly used for tuning Kalman filters can be effectively applied to

the problem of tuning factor graph systems. Evaluate how well the automatically selected

noise and solver parameters support accurate and consistent tracking.

3. Explore refinement strategies for parameter tuning: Investigate additional methods

to improve parameter selection and assess potential gains in consistency compared to the

baseline automatically tuned system.

4. Evaluate system performance across different scenarios: Test the tracking system’s

performance under various conditions including different trajectory lengths, initialization

strategies, and model assumptions to understand system behavior and identify key perfor-

mance factors.
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1.5 Thesis Outline

This dissertation is structured as follows:

• Chapter 2 – Background: Introduces the technical concepts and theoretical foundations

relevant to the project, including tracking, factor graphs, noise modelling, and Bayesian

optimisation. This chapter provides the necessary context for understanding the methodology

and experiments.

• Chapter 3– 2D Tracking Problem: This chapter details the design and implementation

of the factor graph-based tracking system used for the experiments. It confirms the validity

of the system structure with ground truth measurements. The chapter’s primary focus is on

demonstrating a functional system, providing a clear reference point before the automated

tuning process is introduced.

• Chapter 4 – Experiments: This is the core of the research. This chapter focuses on

applying Bayesian optimisation to automatically tune the noise model parameters of the

factor graph. It presents the methodology for the BO framework, including the choice of

performance metrics and the experimental setup. The chapter then presents the results

of the automated tuning process, demonstrating how BO efficiently identifies optimal and

statistically consistent parameter configurations.

• Chapter 5 – Extension: This chapter explores further ideas of aiding the tuning process,

in order to better the chances of finding optimal parameters. It also talks about the effect of

optimally tuned consistency metrics on the accuracy of the trajectory tracking using mean

squared error.

• Chapter 6 – Conclusion and Future Work: This final chapter summarises the key

findings and contributions of the research, highlighting the successful application of Bayesian

Optimisation to automatically tune factor graph parameters. It also outlines potential di-

rections for future work, including further optimisation strategies, the exploration of more

complex tuning problems, and considerations for real-world deployment.
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Chapter 2

Background and Prerequisites

This chapter provides the foundational concepts and mathematical tools necessary to understand

factor graph-based state estimation. It begins with an introduction to factor graphs as a probabilis-

tic modeling framework and explains how these models arise naturally from Bayesian inference in

robotics and tracking problems. Next the discussion of linear and nonlinear system models, leading

to the conditions required for statistical consistency in estimators. Finally, the introduction of key

consistency metrics, Normalized Estimation Error Squared (NEES) and Normalized Innovation

Squared (NIS), describing how they are used to assess and tune graph-based estimators. These

ideas form the basis for the tuning and optimization methods developed in subsequent chapters.

2.1 Factor Graphs as Statistical Models

Factor graphs are a class of probabilistic graphical models that represent the factorization of a joint

probability distribution into a product of local functions [4, 13]. This structure underpins many

state estimation problems in robotics, where the goal is to infer hidden variables (e.g., robot poses,

landmark locations) from noisy and partial observations.

Formally, let X = {X1, X2, . . . , Xn} be the set of random variables in the estimation problem.

The joint distribution p(X) can often be factorized as:

p(X) =

m∏
j=1

ϕj(Sj), (2.1)

where each factor ϕj is a non-negative function depending only on a subset Sj ⊆ X of variables

[4].

A factor graph is a bipartite graph G = (V, F,E) with variable nodes V , factor nodes F , and

edges E connecting each factor node ϕj to its variables Sj . This explicit encoding of local depen-

dencies reveals the problem’s conditional independence structure and enables scalable inference

[13].

2.1.1 Bayesian Estimation and Factorization

Many estimation problems in robotics, including object tracking, can be formulated using Bayesian

inference. Given a sequence of observations Z = {z1, . . . , zt} and control inputs or known dynamics

U = {u1, . . . , ut}, the goal is to estimate the posterior distribution over the current state Xt. This

can be expressed using Bayes’ rule as:
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p(Xk | Z,U) =
p(zk | Xk) p(Xk | Z1:k−1, U1:k)

p(zk | Z1:k−1, U1:k)
, (2.2)

where p(zk | Xk) is the likelihood of the observation given the state, and p(Xk | Z1:k−1, U1:k) is

the predictive prior over the current state, typically computed using a motion model or process

model.

To make these models explicit two functions are introduced. The motion model f(·), which
predicts the next state from the previous state and control inputs, and the measurement model

h(·), which predicts the expected observation from a given state. In practice, both models are

subject to noise, so they are represented as conditional probability distributions. For example:

Xk = f(Xk−1, Uk) + noise, Zk = h(Xk) + noise.

Under standard assumptions (Markov property, conditional independence of measurements

conditioned on the states), the posterior factorizes naturally into prior, motion, and measurement

terms:

p(X | Z,U) ∝ p(X0)︸ ︷︷ ︸
prior

T∏
k=1

p(Xk | f(Xk−1, Uk))︸ ︷︷ ︸
motion factors

T∏
k=0

p(Zk | h(Xk))︸ ︷︷ ︸
measurement factors

. (2.3)

This factorization can be directly represented by a factor graph: each conditional probability

corresponds to a factor ϕj , and the graph’s edges reflect the variables each factor depends upon

[5, 14].

Figure 2.1: Example of a tracking factor graph corresponding to the factorization in Equation 2.3.
Variable nodes represent robot poses x0:K , control inputs u1:k, and measurements z1:K . Factor
nodes (black squares) correspond to priors, motion models, and measurement constraints, each
encoding a conditional probability term in the posterior distribution, represented as a Markov
Chain.

2.1.2 Gaussian Noise Models and MAP Estimation

In many state-estimation problems, including tracking, it is common to model both process and

measurement perturbations as zero-mean Gaussian noise. This modeling choice is motivated by

physical sensor characteristics, the aggregation of many independent disturbances (via the central

limit theorem), and the mathematical convenience that Gaussians belong to the exponential family,
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enabling tractable local approximations after linearization. Under Gaussian noise assumptions,

each factor in the estimation contributes a quadratic penalty on its residual:

ϕj(Sj) ∝ exp
(
− 1

2 ∥rj(Sj)∥2Σ−1
j

)
, (2.4)

where rj(Sj) is the residual or innovation associated with variables Sj , and Σj is the corresponding

covariance matrix. Here, the notation ∥x∥2P denotes the squared Mahalanobis norm, defined as

∥x∥2P = x⊤Px; in this context, P = Σ−1
j , the inverse covariance matrix of the residual. This

connects directly to the factor-specific weighting in the Gaussian likelihood.

Assuming the conditional independences encoded by the factor graph, the posterior distribution

is proportional to the product of such Gaussian terms. Therefore, maximizing the posterior (e.g.,

as in equation 2.3) under Gaussian noise is equivalent to minimizing a sum of squared, covariance-

weighted residuals:

X∗ = argmin
X

m∑
j=1

∥rj(Sj)∥2Σ−1
j

. (2.5)

After linearization, this optimization reduces to solving a sparse normal equations system with

a block-structured Hessian (information) matrix. Standard nonlinear least-squares solvers, like

Gauss–Newton[15] or Levenberg–Marquardt[16, 17], exploit this sparsity efficiently. Moreover, the

inverse of the information matrix approximates the posterior covariance around the Maximum A

Posteriori (MAP) estimate. This equivalence between statistical inference and nonlinear optimiza-

tion forms the foundation of modern graph-based estimation frameworks, widely used in tracking

and related robotics problems [5, 14, 18].

2.2 System Models and Statistical Consistency

To understand how a factor graph operates in a tracking problem, it is essential to define the

underlying system models. This section outlines each component of the factor graph, the corre-

sponding system equations, and the conditions required to evaluate the statistical consistency of

the resulting estimator.

2.2.1 System Models

2.2.1.1 Linear System

Estimation problems in robotics are often represented using a discrete-time state-space formulation.

For clarity, we first consider the linear case, which captures the key interactions between variables:

xk = Fkxk−1 +Bkuk + vk (2.6)

zk = Hkxk +wk (2.7)

where:

• xk: State vector at discrete time step k,

• uk: Control input applied at time k,

• zk: Observation or measurement at time k,
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• vk: Process noise (state transition uncertainty),

• wk: Measurement noise (sensor uncertainty),

• Fk: State transition matrix mapping xk−1 to xk in the absence of control and noise,

• Bk: Control input matrix mapping uk into the state space,

• Hk: Observation matrix mapping the state into the measurement space.

The process and measurement noise are assumed to be zero-mean Gaussian and mutually

independent, with covariances Qk and Rk, respectively:

vk ∼ N (0,Qk), wk ∼ N (0,Rk).

2.2.1.2 Non-linear System

In practice, many robotic systems exhibit nonlinear dynamics and measurement relationships. In

such cases, the system can be expressed as:

xk = f(xk−1,uk) + vk (2.8)

zk = h(xk) +wk (2.9)

where:

• f(·): Nonlinear state transition function,

• h(·): Nonlinear measurement function.

The noise assumptions remain the same: vk and wk are zero-mean Gaussian with covariances

Qk and Rk, respectively.

2.2.1.3 Covariance Matrix Definitions

Let x̂k|j ≜ E[xk | z1:j ] denote the conditional mean of the true state xk given all measurements up

to time j. The corresponding estimation-error covariance is

Pk|j ≜ Cov
[
xk − x̂k|j

∣∣ z1:j] .
The state estimation error is therefore

ex,k ≜ xk − x̂k|k,

a random vector of the same dimension as the state.

Similarly, for a measurement model of the form

zk = h(xk) +wk, wk ∼ N (0,Rk),

the predicted measurement is

ẑk|k−1 ≜ h(x̂k|k−1),

and the measurement residual (innovation) is

ez,k ≜ zk − ẑk|k−1.
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When h(·) is nonlinear, it is common to approximate it locally by its Jacobian Hk evaluated

at x̂k|k−1. Under this approximation, the covariance of the innovation is

Sk|k−1 ≜ HkPk|k−1H
⊤
k +Rk.

These quantities, Pk|j , ex,k, ez,k, and Sk|k−1,are defined here in a general Bayesian estimation

context. Although they arise naturally in recursive filters such as the Kalman filter, we introduce

them primarily as notational tools to formalize the statistical consistency conditions in the next

section.

2.2.2 Statistical Consistency Conditions

Once the system models are defined, statistical consistency is evalutated using three standard

conditions [11]. Using the notation established above, with ex,k ≜ xk − x̂k|k, ez,k ≜ zk − ẑk|k−1,

Pk|k the estimation-error covariance, and Sk|k−1 the innovation covariance:

C.1 Unbiased state estimation.

E[ex,k] = 0, ∀ k. (2.10)

C.2 Correct error covariance (efficiency).

E
[
ex,ke

⊤
x,k

]
= Pk|k, ∀ k. (2.11)

C.3 White Gaussian innovations.

ez,k ∼ N
(
0, Sk|k−1

)
, E[ez,k] = 0, E

[
ez,ke

⊤
z,j

]
= δkj · Sk|k−1, ∀ k, j, (2.12)

where δkj denotes the Kronecker delta, defined by δkj = 1 if k = j and δkj = 0 otherwise; it

compactly encodes that cross-covariances vanish for k ̸= j.

2.2.3 Motivation for Consistency Tuning

In state estimation problems such as target tracking, statistical consistency refers to the agreement

between the uncertainty predicted by the estimator and the actual estimation error observed in

practice [11, 19]. A statistically consistent estimator provides uncertainty information that can be

relied upon when making predictions, assessing performance, or adapting model parameters.

The importance of consistency becomes clear when considering the role of uncertainty in a

tracking filter. If the estimator is overconfident, it will place too much trust in its own predictions

and may fail to respond adequately to new measurements, allowing estimation errors to persist

[11, 9]. Conversely, if the estimator is underconfident, it will overreact to measurement noise,

resulting in unstable or erratic state estimates [20, 21]. Both scenarios can lead to degraded

tracking performance and reduced reliability.

For systems that operate over extended time horizons, even small inconsistencies can accumu-

late, causing the estimated error statistics to diverge from reality [11]. This can impair downstream

decision-making processes such as sensor fusion, track association, or maneuver detection [22, 23].

Ensuring statistical consistency therefore forms a critical foundation for building robust and trust-

worthy tracking systems.
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2.3 Consistency Tuning

As established in Section 2.1.1 and formalized in the statistical consistency conditions of Sec-

tion 2.2.2, a reliable estimator ideally (C.1) produces unbiased state estimates, (C.2) predicts

covariances that match the true estimation error statistics, and (C.3) yields whitened, Gaussian

innovations. In practice, however, these conditions may not hold exactly due to model mismatch,

unmodelled dynamics, or incorrect noise parameterization.

Consistency tuning refers to the process of adjusting process and measurement noise mod-

els to better satisfy these conditions. This is particularly important in graph-based estimators,

where noise parameters influence both the optimizer’s convergence behaviour and the statistical

trustworthiness of the resulting solution. The tuning process relies on metrics that transform multi-

dimensional errors and innovations into scalar quantities with well-defined statistical distributions

under the Gaussian assumptions of Section 2.1.1. Two such metrics, widely adopted are the NEES

and the NIS [24].

2.3.1 Performance Metrics: NEES and NIS

The Normalized Estimation Error Squared (NEES) evaluates whether Conditions C.1 and C.2

hold by measuring the degree to which the actual estimation error is consistent with the predicted

covariance:

NEESk ≜ e⊤x,kP
−1
k|kex,k, (2.13)

where ex,k = xk − x̂k|k and Pk|k are defined in Section 2.2.2. For a consistent estimator, NEESk

is distributed as χ2
nx

with nx = dim(xk) Degrees of Freedom (DoF). This makes NEES a direct

test of the estimator’s unbiasedness and covariance correctness in the state space.

The Normalized Innovation Squared (NIS) is the corresponding metric for innovations and

directly evaluates Condition C.3:

NISk ≜ e⊤z,kS
−1
k|k−1ez,k, (2.14)

where ez,k and Sk|k−1 are the innovation and innovation covariance, respectively, also defined in

Section 2.2.2. A statistically consistent estimator will yield NISk ∼ χ2
nz
, where nz = dim(zk).

Since NIS can be computed without access to the true state, it is particularly useful for online

monitoring and adaptive tuning in deployed systems.

In graph-based backends, NEES is typically evaluated in simulation or Monte Carlo stud-

ies—where ground truth is available. Similarly, NIS can also be evaluated in Monte Carlo studies,

but can also be continuously monitored during real-world operation to detect deviations from the

assumed noise models.

2.3.2 Theoretical Basis for the χ2 Properties

The χ2 properties of NEES and NIS follow from the quadratic form of Gaussian random variables

(see also Section 2.2.2). If e ∼ N (0,Σ), then the scalar

q = e⊤Σ−1e

follows a χ2
d distribution with d = dim(e) DoF. This is shown via spectral decomposition Σ =

UΛU⊤ and the whitening transformation y = Σ−1/2e[25], yielding q =
∑d

i=1 y
2
i with yi ∼ N (0, 1).
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Applying this to the metrics above:

NEESk ∼ χ2
nx

if Conditions C.1 and C.2 hold,

NISk ∼ χ2
nz

if Condition C.3 holds.

These results are exact for linear Gaussian systems and hold approximately for nonlinear systems

under the local-linearization assumptions discussed in Section 2.2.1.2.

The rigorous statistical properties of NEES and NIS enable formal hypothesis testing for es-

timator consistency, where the NIS statistic will be applied in Chapter 3 through offline Monte

Carlo simulations for tuning.

2.4 Graph Tuning

Graph tuning in the context of factor graphs for state estimation, such as in target tracking,

involves optimizing the noise parameters (e.g., Qk,Rk in the system models) to predict their

values when their true values are unknown. The procedure typically entails running multiple Monte

Carlo simulations under a “truth model” to generate ground-truth trajectories and measurements,

computing consistency metrics like NEES and NIS, and iteratively adjusting the parameters until

the metrics align with their theoretical distributions. The goal is to estimate the noise parameters

that best reflect the underlying system dynamics, thereby enhancing the reliability and performance

of the graph-based estimator in real-world deployments, even when the true noise characteristics

are not directly available.

2.4.1 Monte Carlo-Based Consistency Metrics

Given N Monte Carlo runs, the average state error and average innovation at time k are computed

as:

ēx,k =
1

N

N∑
i=1

e
(i)
x,k, (2.15)

ēz,k =
1

N

N∑
i=1

e
(i)
z,k, (2.16)

with corresponding sample variances providing error bars to quantify Monte Carlo uncertainty.

The time-averaged NEES and time-averaged NIS are:

ϵ̃x =
1

T

T∑
k=1

ϵ̄x,k, (2.17)

ϵ̃z =
1

T

T∑
k=1

ϵ̄z,k, (2.18)

where T is the number of time steps.

2.4.2 Joint NEES/NIS Metrics

To mitigate “exploding/vanishing” effects in long horizons or high-dimensional states, the Joint

Normalized Estimation Error Squared (JNEES) and Joint Normalized Innovation Squared (JNIS)
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are defined as [26]:

JNEES =

∣∣∣∣log( ϵ̃x
nx

)∣∣∣∣ , (2.19)

JNIS =

∣∣∣∣log( ϵ̃z
nz

)∣∣∣∣ , (2.20)

where nx and nz are the respective DoF.

The intuition behind the logarithm is that it normalizes the ratio between the time-averaged

metric and the expected χ2 mean. When the numerator (ϵ̃x or ϵ̃z) is close to the denominator (nx

or nz), the logarithm approaches zero, yielding a low score. Minimizing JNEES and JNIS therefore

encourages both accurate scaling and stable behavior across Monte Carlo runs or long trajectories.

2.4.3 Consistent NEES/NIS Metrics

Chen et al. [8] extended the standard NEES and NIS metrics to the Consistent Normalized Es-

timation Error Squared (CNEES) and Consistent Normalized Innovation Squared (CNIS), which

incorporate both the mean and variance of the Monte Carlo samples. The first term in each metric

measures the deviation of the time-averaged NEES/NIS from its expected χ2 mean (as in the

standard JNEES/JNIS), while the second term captures the variability of the metric across runs.

Including the variance term helps prevent overconfidence in the estimator when the sample spread

is large, providing a more robust measure of consistency for tuning purposes.

CNEES =

∣∣∣∣log( ϵ̃x
nx

)∣∣∣∣+
∣∣∣∣∣log

(
S̃x

2nx

)∣∣∣∣∣ , (2.21)

CNIS =

∣∣∣∣log( ϵ̃z
nz

)∣∣∣∣+
∣∣∣∣∣log

(
S̃z

2nz

)∣∣∣∣∣ , (2.22)

where the time-averaged sample variances are defined for the filtering case as:

S̃x =
1

T (N − 1)

T∑
k=1

N∑
i=1

(ϵi,x,k − ϵ̄x,k)
2
, (2.23)

S̃z =
1

T (N − 1)

T∑
k=1

N∑
i=1

(ϵi,z,k − ϵ̄z,k)
2
. (2.24)

It is important to note that these formulations are directly applicable to sequential filters,

where each time step produces a single state estimate and covariance. In graph-based or smoothing

approaches, which optimize over entire trajectories, the direct application of these metrics requires

computing full-trajectory statistics. CNEES and CNIS are evaluated using the complete trajectory

estimates and the full information matrix obtained from the factor graph optimization. This

approach allows the metrics to be used for tuning and assessment while acknowledging that the

statistical properties may differ from sequential filtering approaches.
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These metrics can be further extended over multiple discretization intervals ∆tn:

CNEES,total =

m∑
n=1

CNEES(∆tn), (2.25)

CNIS,total =

m∑
n=1

CNIS(∆tn). (2.26)

Using multiple discretization intervals helps mitigate scale ambiguities that can arise when both

process and measurement noise parameters (Q and R) are adjusted simultaneously [26].

2.4.4 Extension to Graph-Based Tracking

Extending the NEES/NIS framework to factor-graph-based estimators requires care. Unlike se-

quential filters, graph-based methods optimize over the full trajectory simultaneously, and each

factor can involve multiple state variables. The total graph cost for a set of states can be ex-

pressed as a sum of factor residuals, analogous to the squared, covariance-weighted residuals used

in filtering (see Equation 2.3):

f(X) =

m∑
j=1

rj(Sj)
⊤Σ−1

j rj(Sj), (2.27)

where rj(Sj) is the residual for factor j involving the subset of states Sj , and Σj is the associated

covariance.

Proposition 3: Cost at the ground truth. If the graph is initialized at the ground-truth

trajectory x∗ without performing optimization, the resulting cost

f∗ = f(x∗) (2.28)

captures only the contribution of measurement noise. Under Gaussian, independent noise

assumptions, this cost follows a χ2 distribution with degrees of freedom equal to the total dimen-

sionality of all measurement constraints in the graph:

f∗ ∼ χ2
n∗
, n∗ = dim(z), (2.29)

where dim(z) sums over all measurements, including odometry and sensor factors. This rep-

resents a baseline cost due solely to measurement noise. Significant deviations of f∗ from this

distribution indicate that the assumed noise parameters may not match the actual noise.

Proposition 4: Cost at the optimized estimate. After optimizing the graph to obtain the

maximum likelihood estimate x†, the cost

f† = f(x†) ∼ χ2
n† , n† = dim(z)− dim(x), (2.30)

has reduced degrees of freedom because the optimization explains part of the variability through

the state estimates. Here dim(x) is the total number of estimated state dimensions. A properly

tuned graph should yield f† consistent with this reduced χ2 distribution. Systematically low values

indicate overconfidence (underestimated noise), while high values suggest overly conservative noise

assumptions.
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Discussion. These propositions establish a connection between graph-based estimation and the

classical NEES/NIS framework. By comparing the graph costs at the ground-truth trajectory and

at the optimized estimate with their expected χ2 distributions, statistical consistency in graphs can

be evaluated. The key difference from the filtering case is that dim(z) counts all factor constraints

rather than individual measurements, with correlations between shared variables accounted for im-

plicitly through the optimization. The ratio between dim(z) and dim(x) also plays an important

role. In dense graphs, where dim(z) ≫ dim(x), the reduction in degrees of freedom is negligible,

whereas in sparse graphs, where dim(z) is closer to dim(x), the optimized cost becomes more sen-

sitive to the assumed noise. This motivates the use of consistency tests that explicitly incorporate

graph structure.

Practical role of CNEES/CNIS. Propositions 3 and 4 describe the expected behaviour of

graph costs under correct noise assumptions, but they do not provide a direct procedure for pa-

rameter tuning. The CNEES and CNIS metrics address this by reducing consistency to scalar

statistics that can be compared with their theoretical distributions. This reformulation allows the

tuning task to be posed as an optimization problem, in which process and measurement noise pa-

rameters are adjusted to minimise the gap between empirical and expected consistency measures.

In this way, CNEES and CNIS translate the theoretical conditions for consistency into a practical

tool for noise parameter tuning.

2.5 Baysian Optimization for Parameter Tuning

2.5.1 Motivation

In state estimation problems, such as target tracking using factor graphs, the noise parameters,

typically the process noise covariance Q and measurement noise covariance R, play a critical role

in determining estimator performance and consistency [11]. Manual tuning of these parameters is

often impractical due to the complexity of the underlying models and the sensitivity of the system

to small perturbations. Key challenges include:

1. the stochastic nature of consistency objectives like CNEES and CNIS, which are computed

via Monte Carlo simulations and therefore contain inherent noise

2. the high computational cost of each evaluation, which involves repeated factor graph opti-

mizations over multiple trajectories

3. the absence of reliable gradient information, as the objective is effectively a noisy black-box

function

While the project’s work focuses on Bayesian Optimization (BO), several alternative approaches

have been investigated for parameter tuning in state estimation. Gradient-based methods, though

computationally efficient, prove inadequate for consistency objectives due to their non-differentiable

nature and the absence of analytical gradients [12]. Evolutionary algorithms, including genetic

algorithms and particle swarm optimization, offer derivative-free alternatives but often require ex-

tensive parameter tuning themselves and may converge to suboptimal solutions [27]. For instance,

multi-objective genetic algorithms have been used for Kalman filter tuning in battery state estima-

tion [28]. Reinforcement learning approaches have shown promise for adaptive parameter selection

in some contexts, though they typically require significant training data and may not generalize
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well across different system configurations [29]. Multi-objective optimization methods attempt to

balance consistency with other performance metrics, though they introduce additional complexity

in objective function design and solution selection [28].

BO provides an effective solution for such scenarios. It is specifically designed for optimizing

expensive, black-box functions where evaluations are noisy and costly [30, 31, 32]. By treating

the objective as a stochastic black box, BO efficiently explores the parameter space with a min-

imal number of evaluations, making it well-suited for tuning noise parameters under resource

constraints. Recent applications in Kalman filter tuning have demonstrated BO’s ability to handle

noisy, stochastic objectives derived from consistency metrics, while avoiding local minima that can

trap conventional optimizers [26, 12, 8].

2.5.2 Bayesian Optimisation Framework with Gaussian Processes

At the core of BO lies the use of a surrogate model to approximate the unknown objective function.

Gaussian Process (GP) are commonly employed for this purpose due to their flexibility in modeling

uncertainty and providing probabilistic predictions [33]. Formally, the objective function f(q),

where q represents the noise parameters (e.g., elements of Q and R), is modeled as a draw from a

GP prior:

f(q) ∼ GP(µ(q), k(q,q′)),

with mean function µ(q) (often set to zero for simplicity) and covariance kernel

k(q,q′) = σ2 exp

(
−∥q− q′∥2

2ρ2

)
,

where σ2 is the signal variance and ρ is the lengthscale controlling smoothness.

The GP is initialized with a small set of observations Dn = {(qi, yi)}ni=1, where yi = f(qi) + ϵi

and ϵi ∼ N (0, σ2
n) accounts for observation noise, which is particularly relevant for stochastic

consistency metrics derived from Monte Carlo simulations. The posterior GP is refined using

Bayes’ rule. For a new point q∗, the predictive mean and variance are:

µn(q∗) = k⊤
∗ (K+ σ2

nI)
−1y,

σ2
n(q∗) = k(q∗,q∗)− k⊤

∗ (K+ σ2
nI)

−1k∗,

where K is the n× n kernel matrix with entries Kij = k(qi,qj), k∗ = [k(q∗,q1), . . . , k(q∗,qn)]
⊤,

and y = [y1, . . . , yn]
⊤.

Figure 2.2 illustrates a 1D Gaussian Process surrogate, showing how the model predicts the

mean objective function while representing uncertainty in regions without observations.
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Figure 2.2: Illustration of a 1D Gaussian Process surrogate for Bayesian optimisation. Black circles

show observed evaluations of the objective function (e.g., Monte Carlo estimates of a consistency

metric). The blue line represents the GP predictive mean, while the shaded region corresponds

to the 95% confidence interval (µ ± 2σ). The red dashed line is the true function, included for

illustration. The GP explicitly models uncertainty between known evaluations, guiding the choice

of the next sample through acquisition functions.

Hyperparameters like σ2, ρ, and σ2
n are typically optimized by maximizing the marginal log-

likelihood:

log p(y | q1:n) = −1

2
y⊤(K+ σ2

nI)
−1y − 1

2
log |K+ σ2

nI| −
n

2
log 2π.

2.5.3 Acquisition Functions

Acquisition functions are pivotal in BO, as they balance exploration (sampling uncertain regions)

and exploitation (focusing on promising areas) to select the next parameter point qt+1 [32]. As-

suming minimization of the objective f(q), popular choices include:

Expected Improvement (EI): Measures the expected gain over the current best value

f(q+) = min
i=1,...,t

f(qi).

Under the posterior GP, the EI has a closed-form expression:

αEI(q) = E[max(0, f(q+)− f(q))] = σt(q) (ZΦ(Z) + ϕ(Z)) ,

where Z = f(q+)−µt(q)
σt(q)

, and Φ and ϕ are the cumulative distribution and probability density

functions of the standard normal distribution, respectively. A small ξ > 0 can be added to Z as

Z = f(q+)+ξ−µt(q)
σt(q)

to encourage more exploration [34].

Lower Confidence Bound (LCB): For minimization tasks, the acquisition function is

αLCB(q) = µt(q)− κσt(q),

where κ ≥ 0 controls the exploration–exploitation trade-off: larger values of κ emphasize explo-
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ration by sampling uncertain regions, while smaller values favor exploitation of regions with low

predicted mean. Theoretical regret bounds exist for LCB with appropriately scheduled κ [35].

Comparison of behaviours. The choice of acquisition function affects the sampling strategy:

• EI focuses on regions where the expected improvement over the current best is high. It nat-

urally balances exploration and exploitation but can aggressively exploit promising regions.

• LCB explicitly trades off mean prediction and uncertainty via the κ parameter. It can be

tuned to favor more exploration in highly uncertain or noisy settings, or more exploitation

in well-understood regions.

Testing both acquisition functions allows the optimizer to adapt to different objective land-

scapes. In the context of consistency tuning, where objective evaluations are noisy and the land-

scape may be multimodal, comparing EI and LCB can reveal which strategy provides more robust

convergence.

2.5.4 Application to Noise Parameter Tuning

In the context of tuning factor graphs for tracking, the parameters of interest include the process

noise intensity Q and measurement noise variance R. The objective is to minimize aggregated

consistency metrics, such as CNEES or CNIS, which quantify deviations from statistical consistency

across multiple simulated trajectories [11, 8]. The process unfolds as follows

1. Initialize a GP surrogate and select initial candidate parameters q0 (e.g., via Latin hypercube

sampling)

2. Construct Q and R matrices from q

3. Perform factor graph optimization on simulated data

4. Compute the consistency score (e.g., CNEES,total) averaged over trajectories

5. Update the GP with the new observation

6. Use an acquisition function to propose the next qt+1

7. Repeat until convergence or budget exhaustion.

This yields a data-driven calibration of noise statistics, enhancing estimator reliability without

exhaustive grid searches [26, 12, 8]. In practice, constraints on parameter positivity (e.g., via

log-transforms) and multi-fidelity evaluations can further improve efficiency [31]. Extensions using

Student-t processes provide additional robustness to outliers in noisy objectives [8].

2.6 Summary and Transition

This chapter has established the theoretical foundations necessary for understanding automated

parameter tuning in factor graph-based state estimation. It began by introducing factor graphs

as probabilistic graphical models, highlighting how these structures represent the factorization

of joint probability distributions in estimation problems. The discussion then addressed system

modeling, covering both linear and nonlinear formulations, and introduced the three fundamental

conditions for statistical consistency: unbiased estimation, correct error covariance, and white
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Gaussian innovations. Building on this framework, consistency metrics such as NEES and NIS

were presented, along with their advanced variants (CNEES/CNIS) that account for both mean

and variance considerations. The chapter concluded with an overview of automated parameter

tuning strategies, with particular emphasis on BO, which employs GP surrogates to efficiently

explore parameter spaces for expensive, black-box consistency objectives. This progression from

theoretical principles to methodological considerations provides the foundation for the experimental

work and contributions developed in the following chapters.
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Chapter 3

2D-Tracking Problem Setup

This chapter describes the tracking problem used to evaluate the factor-graph estimator. Two

dynamical systems are considered: a linear Constant Velocity (CV) model and a nonlinear Constant

Turn rate (CT) model. For each system the chapter presents the system equations, the process

and observation noise models, a short trajectory example for intuition, and the ground-truth

consistency tests.

3.1 Common notation and basic assumptions

Throughout the chapter the discrete-time state is written as the column vector xk = [x, y, vx, vy]
⊤

with x and y giving the Cartesian position and vx and vy giving the Cartesian velocity. Measure-

ments are denoted zk, control inputs uk, process noise vk ∼ N (0,Q(∆t)) and measurement noise

wk ∼ N (0,R). Process covariances Q depend on the timestep ∆t; measurement covariances R do

not, which will be later discussed when formulating both matrix frames. Factor-graph residuals

are weighted by these covariances during least-squares optimisation.

Cross-references to Proposition dimensionality are given to the expressions in Chapter 2: (2.29)

and (2.30). Concretely, the total residual dimension used in the global χ2-type checks is obtained

by summing process residual dimensions and measurement residual dimensions (this total is dim(z)

below).

3.2 Linear model

3.2.1 System model

The linear baseline uses a constant-velocity model with state

xk = [x, y, vx, vy]
⊤. (3.1)

The discrete-time linear state update is

xk = Fkxk−1 +Bkuk + vk, (3.2)
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with the standard constant-velocity transition and input matrices

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , B =


∆t2

2 0

0 ∆t2

2

∆t 0

0 ∆t

 .

Role of F,B,Q,R. During propagation the predicted state is Fxk−1 + Buk and the process

residual used by the binary (process) factor is xk − (Fxk−1 +Buk). That residual has covariance

Q(∆t) and thus Q directly determines the process-factor weight in the least-squares problem.

Measurement factors are formed from the residual zk −Hxk and are weighted by R. These two

covariances therefore control the trade-off between following the dynamical model and fitting sensor

data.

3.2.2 Process model

The discrete-time process covariance used for the linear model is the integrated constant-acceleration

form (parametrised by a single isotropic intensity V ):

QCV(∆t;V ) =


∆t3

3 Vx 0 ∆t2

2 Vx 0

0 ∆t3

3 Vy 0 ∆t2

2 Vy

∆t2

2 Vx 0 ∆t Vx 0

0 ∆t2

2 Vy 0 ∆t Vy

 , (3.3)

with Vx = Vy = V in the isotropic case used in experiments. Each process factor uses the Q

computed with the local ∆t.

3.2.3 Observation model

Position measurements are Cartesian and linear in the state:

zk = Hxk +wk, H =
[
I2×2 02×2

]
, (3.4)

and

R =

[
σ2
x 0

0 σ2
y

]
. (3.5)

Where once again σ2
x = σ2

y = σ2. These measurement factors constrain the positional components

of xk only.

3.2.4 Data generation

To evaluate the estimator performance, Monte Carlo trajectories were generated using the linear

system model described above. Each trajectory consists of T = 100 time steps with ∆t = 1,

starting from initial position (0, 0) with velocity (1, 1). Process noise was sampled from vk ∼
N (0,QCV(∆t;V = 1)) at each time step, and measurement noise from wk ∼ N (0,R) with σ2 = 2.

A total of N = 500 independent Monte Carlo runs were generated using different random seeds to

ensure statistical diversity in the test ensemble.
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The data generation process follows the system equations exactly: xk = Fxk−1 + Buk + vk

with uk = 0 (constant velocity), and measurements zk = Hxk +wk. This ensures perfect model

consistency between data generation and the factor graph estimator assumptions.

3.2.5 Trajectory example (linear)

Trajectories under the CV model are straight with the addition of process noise on top. A rep-

resentative simulated trajectory (single Monte Carlo run) is shown in Figure 3.1 to illustrate how

process noise Q produces spread over time and how measurements scatter around the true path

according to R.

Figure 3.1: Representative CV trajectory with process and measurement noise (single Monte Carlo

run). The run uses the initial start position (0, 0) with velocity (1, 1).

3.2.6 Linear ground-truth tests

Baseline parameters set for the ground truth tests are V = 1, σ2 = 2, T = 100, ∆t = 1), and

Monte Carlo runs N = 500, giving the following Q and R covariance matrix:

Q =


1
3 0 1

2 0

0 1
3 0 1

2
1
2 0 1 0

0 1
2 0 1

 , R =

[
2 0

0 2

]
, (3.6)

Proposition 3 (ideal conditions). The total residual degrees of freedom used in the graph-

level χ2 statistic is the sum of process residual dimensions and measurement residual dimensions.

Using the notation from Chapter 2:

dim(z) = nx(T − 1) + nzT, (3.7)

where nx is the state dimension and nz the measurement dimension. For nx = 4, nz = 2 (based on

the state and observation dimensions), T = 100 this gives dim(z) = 596, and theoretical covariance

2 ·596 = 1192. The observed NIS values over 500 runs (Figure 3.2) show mean and covariance close
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to theory; the computed CNIS was 0.049929, leading to the claim that the system has achieved

statistical stability using the ground truth noise covariance.

Figure 3.2: NIS values for the linear system under ideal conditions (Proposition 3).

Proposition 4 (non-ideal conditions). When the initial state is treated as unknown the

effective degrees of freedom are reduced by dim(x). The expression is

dim(z)− dim(x) =
(
nx(T − 1) + nzT

)
− nxT, (3.8)

which for the same numeric values mentioned for proposition 3 yields 196 (theoretical covariance

392). The observed NIS distribution is shown in Figure 3.3; CNIS remained low (0.053066) and

results are consistent with finite-sample deviations.
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Figure 3.3: NIS values for the linear system under non-ideal conditions (Proposition 4).

Covariance discrepancies and implications (linear). Although mean values of the statistics

closely match theory, the empirical covariance occasionally differs from the theoretical covariance

by more than would be expected from sampling noise alone. Such discrepancies suggest that one

or more Gaussian assumptions (for example, the distribution of measurement or process residuals)

might not fully hold in the generated ensembles. This observation does not imply an implementa-

tion error: the factor-graph estimator and its weighting by Q and R are functioning as intended,

and the mean behaviour is consistent with expectation. However, the mismatch in covariance lim-

its the strength of any claim that the system is fully statistically functional in the strictest sense.

A more detailed Monte Carlo diagnostic (convergence with Pearson tests) is therefore necessary to

determine whether residuals are Gaussian and to guide any modelling changes.

3.3 Nonlinear model

The nonlinear section now describes only the differences relative to the linear model; where no

difference is stated the linear model treatment (state vector, measurement model, dimensionality

expressions, and the NIS/NEES testing procedure) applies unchanged.

3.3.1 System model differences

The nonlinear constant-turn model uses the same state vector xk = [x, y, vx, vy]
⊤ but a nonlinear

transition:

xk = f(xk−1, ω) + vk, (3.9)
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with

f(xk, ω) =


xk +

v

ω

[
cos(θk + ω∆t)− cos(θk)

]
yk − v

ω

[
sin(θk + ω∆t)− sin(θk)

]
v cos(θk + ω∆t)

v sin(θk + ω∆t)

 ,

where v =
√
v2x + v2y and θk = atan2(vy, vx) and ω is used as the control input uk. Iterative

optimisation (e.g. Gauss–Newton) is required to solve the resulting nonlinear least-squares problem

inside the factor graph.

3.3.2 Process covariance for the CT model

To reflect rotational dynamics the CT process covariance is formed by rotating the CV covariance

into the turning frame, effectively mapping the covariance of the observation correctly in the world

frame.. Define the planar rotation

θ = ω
∆t

2
, R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
, T(θ) = diag

(
R(θ), R(θ)

)
.

Then

QCT(V,∆t, ω) = T(θ) QCV(V,∆t) T(θ)⊤. (3.10)

Each nonlinear process factor therefore uses the rotated covariance QCT computed with the local

ω and ∆t.

3.3.3 Observation model (unchanged)

Measurements remain Cartesian position only and use the same linear measurement model zk =

Hxk +wk with H and R as in (3.4)–(3.5). This choice keeps the comparison between linear and

nonlinear dynamics focused on the propagation rather than sensing.

3.3.4 Data generation (nonlinear)

Nonlinear trajectories were generated using the same baseline parameters as the linear case (V = 1,

σ2 = 2, T = 100, N = 500 runs) but with the constant-turn dynamics. Each trajectory starts from

the same initial conditions and follows the nonlinear state update xk = f(xk−1, ω) + vk with turn

rate ω = 0.1 rad/s. Process noise was sampled from vk ∼ N (0,QCT(V,∆t, ω)) using the rotated

covariance matrix, while measurement noise remained unchanged from the linear case.

The nonlinear data generation ensures consistency between the true dynamics and the factor

graph model assumptions, providing a fair baseline for evaluating estimator performance under

curved motion. The same random seeds were used across linear and nonlinear experiments to

enable direct comparison of consistency metrics.

3.3.5 Trajectory example (nonlinear)

A representative CT trajectory demonstrating curvature and the effect of QCT is shown in Fig-

ure 3.4. The figure is intended to give intuition for how turning affects the spread of ground-truth

trajectories relative to the CV case.
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Figure 3.4: Representative CT trajectory with process and measurement noise (single Monte Carlo

run).

3.3.6 Nonlinear ground-truth tests

Ground-truth Monte Carlo tests were performed with the same baseline parameters as the linear

experiments, Section 3.2.6. Because the measurement model and the dimensionality bookkeeping

(dim(z), dim(z) − dim(x)) are unchanged, the same theoretical degrees-of-freedom expressions

apply (see (3.7) and (3.8)).

Proposition 3 (ideal conditions). The NIS distribution under ideal conditions is plotted in

Figure 3.5 and is close to theory; this is expected since the same measurement model and noise

seeds were used to compare methods.

Figure 3.5: NIS values for the nonlinear system under ideal conditions (Proposition 3).
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Proposition 4 (non-ideal conditions). Under non-ideal initialisation the nonlinear case shows

a slightly larger observed covariance (approximately 413.99 vs theoretical 392), and CNIS=0.055313.

These small deviations are consistent with finite-sample effects and the additional optimisation

complexity introduced by the nonlinear dynamics (Figure 3.6).

Figure 3.6: NIS values for the nonlinear system under non-ideal conditions (Proposition 4).

Covariance discrepancies and implications (nonlinear). As with the linear experiments,

the nonlinear runs show occasional covariance deviations larger than expected from sampling alone.

Because the nonlinear propagation and optimisation can amplify non-Gaussian effects, these dis-

crepancies further motivate an explicit examination of the residual distributions. The practical

implication is the same: while the estimator is operating as intended (mean statistics are close

to theoretical values), the covariance mismatch weakens any claim of full statistical functionality

without additional diagnostics. The following chapter therefore contains targeted Monte Carlo

analyses to determine whether residuals are non-Gaussian and, if necessary, to recommend model

or algorithmic adjustments.

3.4 Summary and discussion

This chapter has presented the 2D tracking problem used to evaluate the factor-graph estimator

and the baseline configuration for experiments. The main points are:

• The state is x = [x, y, vx, vy]
⊤. Both systems use Cartesian position measurements zk and a

measurement covariance R = σ2I2.

• The linear model is the constant-velocity (CV) formulation with discrete-time update xk =

Fxk−1+Buk +vk. The matrices F and B are the standard constant-velocity transition and

input matrices, and process uncertainty is modelled by QCV(∆t;V ).
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• The nonlinear model is the constant-turn (CT) formulation. It shares the same state and

measurement model; its transition is nonlinear, xk = f(xk−1, ω) + vk, and the process

covariance is obtained by rotating the CV covariance: QCT = T(θ)QCVT(θ)⊤.

• Process factors in the factor graph use residuals of the form xk − (Fxk−1 + Buk) (or the

nonlinear analogue) weighted by Q. Measurement factors use residuals zk −Hxk weighted

by R. These covariances control the relative influence of dynamics and observations in the

optimisation.

• Ground-truth Monte Carlo tests (N = 500 runs) show that mean NIS/NEES values align

closely with theoretical expectations for both linear and nonlinear systems. This indicates

the estimator and the chosen covariance parameterisations behave as intended under the

baseline conditions.

A notable caveat from the ground-truth experiments is that the empirical covariance of the χ2-

type statistics sometimes departs from the theoretical covariance by more than sampling variability

would predict. This discrepancy suggests the possibility that one or more Gaussian modelling

assumptions (in particular the Gaussianity of process or measurement residuals) may not hold

exactly for the generated ensembles. While the estimator itself appears to function correctly

(mean statistics are consistent with expectations), the covariance mismatch weakens any claim of

full statistical functionality in the strictest sense.

To investigate this, the following chapter contains targeted Monte Carlo diagnostics to assess

whether residuals are Gaussian. The experiments that follow (grid search and Bayesian optimisa-

tion over V and σ2) therefore build on the working baseline established here and throughout the

rest of the experiments.
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Chapter 4

Experiments

This chapter builds on the ground truth validation presented in Chapter 3, where the system

was shown to function as intended. The focus here shifts toward exploring parameter tuning and

robustness. Starting with a simple blanket search to visualise the CNIS values surrounding the

true values of V and σ2. This is followed by applying BO to more efficiently identify the optimal

V and σ values. Finally, stress-testing and refinement experiments, including hyper-parameter

variation and adjustments to the factor graph setup, to further evaluate and improve the method.

4.0.1 Correcting Initial Assumptions

During the earlier studies in this section, it became apparent that the results were returning

seemingly random V and σ2 values. Regardless of adjustments made to the BO or grid search

experiments, the outcomes varied drastically within each trajectory length. In several cases, the

estimates were not only implausible but appeared effectively random. This was further evident in

Chapter 3 where the covariance didn’t line up with the theoretical covariance when using the ground

truth runs. Closer inspection revealed that the number of Monte Carlo runs—although initially

assumed sufficient—was likely too low to produce statistically stable results. This motivated the

following Section 4.1, which tests whether the original choice of 500 runs was truly adequate.

4.1 Monte Carlo Run Convergence Analysis

Monte Carlo (MC) evaluation underpins the consistency testing framework used throughout this

dissertation. As with any stochastic method, the reliability of results depends critically on the

number of independent trials N . If N is too small, the statistics may not approximate their true

distributions, leading to misleading conclusions. This section investigates how N influences the

stability of the CNIS measure, and related statistics, in order to establish a practical guideline for

simulation experiments.

Motivation

In preliminary experiments, unusual behaviour was observed in the CNIS cross-sections for Propo-

sitions 3 and 4. Theory predicts that plotting CNIS against V and σ2 (the scalar terms in the

covariance matrix structures) should yield a clear “valley” structure. However, with N = 500 runs

the cross-sections produced a wide, flat-bottomed ‘U’ shape (Fig. 4.1). Decomposing CNIS into its

two logarithmic components, mean and variance, confirmed that instability in the separate terms
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was responsible for this behaviour. Such results indicate that CNIS values from earlier experiments

were not representative of their underlying χ2 distributions. It was therefore hypothesised that

increasing N would correct the behaviour, motivating the following convergence study.

Proposition 3, M = 500 (bad alignment). Proposition 4, M = 500 (bad alignment).

Figure 4.1: CNIS cross-sections for Proposition 3 and 4 at insufficient N = 500 Monte Carlo runs.

4.1.1 Experimental Setup

To systematically study convergence, the number of Monte Carlo runs N was varied from 25 to

30, 000 in increments of 25. For each N , the following quantities were computed and stored:

• The log-mean term of NIS,
∣∣∣log ( ϵ̃z

nz

)∣∣∣
• The log-variance term of NIS,

∣∣∣log ( S̃z

2nz

)∣∣∣
• The CNIS metric from equation 2.22

This approach makes it possible to directly observe how the statistics stabilise at the ground-

truth values of V and σ2 from the data generation component in section 3. While such reference

trajectories are not available in real-world deployments, they can be accessed in simulation, en-

abling validation of convergence behaviour against known distributions. The aim here is not to

prescribe a universal N for practice, but rather to determine how many runs are required in

simulation for stable, interpretable results.

4.1.2 Data Generation

4.1.3 Results for T = 100

Using a trajectory length of T = 100, a dataset of 30, 000 Monte Carlo runs was generated. The

script iteratively evaluated subsets, starting with the first 25 runs and increasing in steps of 25,

each time using the ground-truth values V = 1.0 and σ2 = 2.0.
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Figure 4.2: Proposition 3: mean/variance behaviour of NIS, T = 100.

Figure 4.3: Proposition 3: CNIS convergence, T = 100.

Figure 4.2 shows the two log terms across iterations. It is clear that the original choice of N =

500 was insufficient: with too few runs, the mean and variance values vary widely between number

of Monte Carlo runs. Focusing on the CNIS measure, which combines these terms, highlights how

strongly under-sampling distorts the results.

Both graphs begin to plateau around N = 5000 runs, though they do not stabilise fully until

approximatelyN = 25, 000. Since increasingN greatly extends runtime, a compromise ofN ≥ 5000

appears sufficient for practical data collection.
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Figure 4.4: Proposition 4: mean/variance behaviour of NIS, T = 100.

Figure 4.5: Proposition 4: CNIS convergence, T = 100.

For Proposition 4 the behaviour is more erratic. Although the relative changes mirror Propo-

sition 3, the smaller degrees of freedom lead to larger relative fluctuations. Here, convergence is

delayed until closer to N ≈ 10000, and even after plateauing, the CNIS curve exhibits noticeable

oscillations. Overall, Proposition 4 requires a larger number of runs for stable results.

To further confirm these observations, the NIS noise was mapped as a probability density

function for N = 500 and N = 10000.
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NIS distribution, M = 500.
Pearson test results, M = 500.

NIS distribution, M = 10 000.
Pearson test results, M = 10 000.

Figure 4.6: Empirical Probability Density Function of NIS and Pearson test overlays for insufficient

(M = 500) vs sufficient (M = 10 000) Monte Carlo runs.

The NIS density functions in Fig. 4.6 reinforce the findings. With N = 500, the distribution

deviates significantly from the theoretical χ2 reference, and the Pearson test rejects consistency,

reporting a coefficient of 0.736. By contrast, with N = 10, 000, the histogram closely matches the

Gaussian χ2 curve and the Pearson test confirms consistency, with a coefficient of 0.0822. This

demonstrates the risks of under-sampling.

Proposition 3, M = 10 000 (good alignment). Proposition 4, M = 10 000 (good alignment).

Figure 4.7: CNIS cross-sections for Proposition 3 and 4 at sufficient N = 10, 000 Monte Carlo runs.

With the increased sample size, the cross-sections now exhibit the expected ‘V’ shape rather

than the flat-bottomed ‘U’. This sharper valley structure should improve the performance of later

BO experiments by providing a clearer optimisation surface.

Effect of Shorter Trajectories

To test whether trajectory length affects the required N , experiments were repeated with shorter

trajectories (T = 20).
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Proposition 3 convergence, T = 20. Proposition 4 convergence, T = 20.

Proposition 3 mean/variance behaviour,

T = 20.

Proposition 4 mean/variance behaviour,

T = 20.

Figure 4.8: Convergence of CNIS, mean NIS, and variance of NIS for shorter trajectories (T = 20).

As shown in Fig. 4.8, convergence occurs somewhat earlier: around N ≈ 3000 for Proposition 3

and N ≈ 8000 for Proposition 4. However, the estimates are noisier overall compared with the

T = 100 case. This is expected—fewer degrees of freedom increase the relative change of the NIS,

making the estimates less stable.

Summary

This analysis shows that the original choice of N = 500 was inadequate for reliable CNIS eval-

uation. Stable convergence typically requires on the order of N = 5000 for Proposition 3 and

N = 10, 000 for Proposition 4, depending on trajectory length. Although computationally ex-

pensive, this is justified in simulation studies where accurate consistency validation is essential.

For the remainder of this dissertation, N = 10, 000 was used for all experiments to ensure con-

sistency across Propositions 3 and 4. These findings provide a solid foundation for the Bayesian

optimisation stage, ensuring that parameter tuning is based on trustworthy statistical evidence.

4.2 Experiment 1: Dense Cost Landscape in Q,R

The first experiment is designed to map the entire cost landscape of the CNIS metric as a function

of the process noise covariance scaling term, V , and the measurement noise covariance scaling

term, σ2. This “blanket search” provides a detailed visualisation of the problem space, serving

as a ground truth against which more sophisticated optimisation techniques can later be assessed.

By characterising the topology of this surface, its smoothness, convexity, and location of minima,

we can better interpret the behaviour of the tracking system and the performance of subsequent

optimisation algorithms.

4.2.1 Setup

The experimental procedure consists of an exhaustive evaluation over a two-dimensional grid of

hyper-parameters. The grid spans process noise intensity V and measurement noise variance σ2,

with a dense resolution of 50×50 points, yielding 2,500 parameter pairs in total. This resolution
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was chosen to balance computational cost against the structure of the cost surface. The ranges for

V and σ2 were selected broadly enough to contain the expected optima, guided by the ground truth

parameters used in data generation. In a practical study, the initial values of the noise covariances

should be estimated prior to this step as a starting range. Given the true parameters, the ranges

are V = (0.01, 2.0) and σ2 = (0.01, 4.0). These ranges should provide sufficient rough estimates to

capture the area around the true tuning paramters.

For each (V, σ2) pair, the following steps are carried out:

1. A factor graph model is configured with process noise covariance Q and measurement noise

covariance R.

2. The model is evaluated against a dataset of 10,000 pre-generated Monte Carlo trajectories,

with runs executed in parallel to maintain computational feasibility.

3. For each full set of trajectories, the CNIS value is computed. Both Proposition 3 and Propo-

sition 4 are considered in different plot instances, providing consistency checks under ideal

and non-ideal conditions.

4. From the resulting distribution of 2,500 CNIS values, the minimum is identified, giving an

approximate estimate of the corresponding V and σ2.

Throughout this experiment a constant time step of dt = 1.0 is used, ensuring that theQmatrix,

which depends on the time interval, remains consistent across all factors and runs. This controlled

setup provides a clean baseline for analysing how the static noise parameters (V, σ2) shape the

CNIS landscape. The final output is a 2D matrix of CNIS values, visualised as a heatmap.

4.2.2 Results and Discussion

4.2.2.1 Linear Model.

The dense grid search for the linear constant-velocity model reveals a diagonal valley structure in

the (V, σ2) plane.

Proposition 3. The optimum occurs at (V, σ2) = (0.980102, 2.12292) with CNIS = 0.00615216,

close to the ground truth (1.0, 2.0).

Figure 4.9: Linear model, Proposition 3: 3D

cost surface using a log scale key for better

viewing of the valley.

Figure 4.10: Linear model, Proposition 3: 2D

heatmap using a log scale key for better viewing

of the valley.

34



The surface forms a smooth curved valley with “tails” roughly aligned with the true V and

σ2 values, converging towards a minimum close to ground truth. In log space, colour scaling

exaggerates gradients, but in absolute terms the region around the optimum is relatively flat with

even the tails differing only slightly from the centre. Based on the shape, σ2 is more sensitive to

CNIS variation than V . The tuning parameters are not located exactly at the apex of the curve but

are skewed towards the V axis. This means small movements along the valley ridge affect σ2 more

strongly than V . The parameters identified by the minimum CNIS should therefore be viewed as

rough estimates of the true optimum. The limited resolution of the grid is partly responsible. This

ridge requires finer sampling to pinpoint the true values accurately.

Proposition 4. Here the optimum shifts to (V, σ2) = (1.18408, 1.87808) with CNIS = 0.00639314.

Figure 4.11: Linear model, Proposition 4: 3D

cost surface using a log scale key for better

viewing of the valley

Figure 4.12: Linear model, Proposition 4: 2D

heatmap using a log scale key for better viewing

of the valley

In the case of proposition 4 the valley is longer and flatter, meaning CNIS varies little along the

ridge. This elongation reduces the likelihood of identifying the exact tuning parameters. Unlike

Proposition 3, sensitivity is reversed: small movements along the ridge affect V more strongly than

σ2. The flatness again implies that the reported optimum is only approximate, since nearby points

produce equally good scores.

4.2.2.2 Nonlinear Model.

The nonlinear constant-turn system (ω = 0.1 rad/s) produces qualitatively similar diagonal valleys

in (V, σ2).

Proposition 3. The minimum occurs at (V, σ2) = (0.980102, 2.12292) with CNIS = 0.00615216.
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Figure 4.13: Non Linear model, Proposition 3:

3D cost surface using a log scale key for better

viewing of the valley

Figure 4.14: Non Linear model, Proposition 3:

2D heatmap using a log scale key for better

viewing of the valley

As in the linear case, the valley converges near the true parameters. The flatness of the optimum

shows robustness to small mis-specifications in V or σ2. Notably, the linear and nonlinear models

yield identical results for Proposition 3, since the noise injected into each trajectory is the same

and the ideal initialisation minimises differences.

Proposition 4. The optimum is (V, σ2) = (0.939306, 2.04131) with CNIS = 0.683499.

Figure 4.15: Non Linear model, Proposition 4:

3D cost surface using a log scale key for better

viewing of the valley

Figure 4.16: Non Linear model, Proposition 4:

2D heatmap using a log scale key for better

viewing of the valley

Here the valley is longer and even flatter than in Proposition 3, with many (V, σ2) pairs pro-

ducing almost identical CNIS scores. Unlike Proposition 3, the linear and nonlinear results are

not identical: although the same noise seeds are used, the nonlinear dynamics introduce small

differences during the optimisation step, leading to slightly different optima.

4.2.2.3 General Observations.

Across both models and propositions, the CNIS landscapes consistently form diagonal valleys,

reflecting the trade-off between V and σ2. Increasing V (process noise) can be offset by reducing

σ2 (measurement noise), and vice versa, since both control effective uncertainty in the system.
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Along the ridge, the system achieves a similar balance between process noise and measurement

noise, producing near-constant CNIS values with only a gradual dip towards the true parameters.

The difference between Propositions 3 and 4 is primarily due to initialisation. In Proposition 3,

sensitivity lies more in σ2, which makes sense given the ideal start from (0, 0): measurement noise

dominates since no initial process noise is present. In Proposition 4, with random initialisation,

the system relies more heavily on process noise, making V more influential, aligning with the

statements made in section 2.4.4.

4.2.2.4 Summary and Motivation for Bayesian Optimisation.

In summary, the grid search successfully reveals the valley structure of the CNIS surface but is

computationally expensive and limited in resolution. The flat ridges, especially in Proposition 4,

mean that small amounts of numerical noise or grid spacing can shift the reported optimum, even

though the underlying surface is genuinely flat. This explains the slight displacements of optima

observed across runs.

These findings motivate the use of Bayesian Optimisation in the following section. By adap-

tively concentrating evaluations in promising regions, Bayesian Optimisation can achieve finer

resolution along the ridge without exhaustively sampling the entire space. This both reduces com-

putational cost and improves our ability to distinguish subtle local minima, while also clarifying

the identifiability of (V, σ2).

4.3 Experiment 2: BO parameter search of V, σ2

Following the previous section, experiment two aims to counter the drawbacks of an exhaustive

search by striking a balance between detail and computational cost. Previous Sections tested

on both the linear and non-linear setup, however, as it has been proven both work and produce

simmilar results, time will only be spent on the non-linear setup for the parameter exploration.

Firstly, testing the acquisition functions EI and LCB are the first priority. The goal of this short

first half of the experiment is to determine which results leads to a better CNIS result and to assess

the general shape of the search.

4.3.1 Setup

• Search space: (V, σ2) optimised in linear space with bounds matched to the grid experiment

for comparability.

• Objective: CNIS calculated across 10000 Monte Carlo trajectories. Each candidate is

mapped to (Q,R), the factor graph is solved, and CNIS is computed under the selected

proposition (either Proposition 3 or Proposition 4, as configured).

• Acquisition function: EI and LCB separately tested in order to determine best likely

acquisition function. Both functions also have a force jump parameter of 10 so that they

would leave local minima if stuck for too long, reducing chance of incorrect minima.

• Surrogate model: Gaussian Process with Matérn-5/2 ARD kernel; no output normaliza-

tion.

• Evaluation budget: ninit = 100 initial samples and nBO = 750 BO iterations (approxi-

mately 850 total evaluations).
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• Data Input: trajectories consistiting of the base hyper parameters, ∆t = 1.0, set seed to

the same as previous sections, V = 1.0, σ2 = 2.0, turn rate ω = 0.1rad/s.

• Outputs: Report best (V, σ2, CNIS), and runtime.

• Repetitions: Repeated 3 times, tabulating all results and plotting the run with the lowest

CNIS value.

Implementation (Pseudocode). A high-level pseudocode of the BO implementation is given

below, describing the outputs of the script for the non linear system.

Algorithm 1: Bayesian Optimization for Tuning (V, σ)

Input: Initial parameters (V, σ), number of iterations N

Output: Optimized (V ⋆, σ⋆)

Initialize Gaussian Process surrogate GP;

for i = 1 to N do

Select (Vi, σi) using acquisition function α;

Evaluate CNIS at (Vi, σi) with Monte Carlo sampling;

Update GP with (Vi, σi,CNIS);

end

return best (V ⋆, σ⋆) found;

4.3.2 Comparison of EI and LCB Acquisition Functions

Both functions were applied to Proposition 3 and Proposition 4 using trajectories of length T = 100.

Each setup was repeated three times to check for robustness. The following results combine

tabulated statistics with visualisations of the optimisation surfaces.

4.3.2.1 Proposition 3: ideal case

Table 4.1 reports the EI results for Proposition 3, while Figure 4.17 shows the corresponding

optimisation surface.

Table 4.1: EI results for Proposition 3 (T = 100).

Run V σ2 CNIS Mean NIS Var NIS Time [s]

1 1.00617 2.00855 0.0049321 593.160 1192.186 613

2 1.00049 2.03066 0.0051505 593.226 1192.579 608

3 1.01434 1.97659 0.0050835 593.212 1192.471 619

GT 1.00000 2.00000 0.0119351 596.441 1205.419 –
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Figure 4.17: The EI optimisation surface using BO to find the best value of CNIS under proposition

3 with a trajectory length of T = 100.

The EI search traces the main ridge of the optimisation valley but also steps up the walls in a

few places. This gives a good mix of refinement and wider coverage, with CNIS values as low as

0.004932, with V and σ2 values extremely close to the ground truth. The broader spread comes

from the force jump mechanic, which stops the optimiser from sitting in one part of the valley. EI

naturally complements this approach because it assigns high acquisition values to regions where

uncertainty is large and the mean prediction suggests potential improvement, creating a principled

exploration-exploitation trade-off that prevents premature convergence.

Table 4.2 and Figure 4.18 show the results under LCB.

Table 4.2: LCB results for Proposition 3 (T = 100).

Run V σ2 CNIS Mean NIS Var NIS Time [s]

1 0.99520 2.05380 0.0051826 593.110 1192.383 621

2 1.03435 1.90924 0.0055071 592.799 1192.145 609

3 0.99687 2.04646 0.0051512 593.142 1192.410 609

GT 1.00000 2.00000 0.0119351 596.441 1205.419 –
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Figure 4.18: The LCB optimisation surface using BO to find the best value of CNIS under propo-

sition 3 with a trajectory length of T = 100.

LCB, on the other hand, stays tighter along the ridge and the search path looks shorter. This

is because LCB mostly favours points with low predicted mean, so on a flat valley it keeps re-

sampling in the same region. Unless κ is pushed higher, the added uncertainty at the walls is not

enough to pull it away. The force jump has less effect here too, since most jump points score worse

than the valley floor under LCB. The minimum CNIS of LCB is 0.005151, slightly higher than EI

but practically the same. The main difference lies in the recovered parameters. The V value is still

close to ground truth, but the σ2 estimate drifts slightly further than in the EI case. This reflects

the sensitivity of the valley ridge, where even small shifts in V can lead to larger variations in σ2.

Overall, both methods work well in this ideal case, but EI spreads further and gives slightly

better coverage of the landscape. Now lets see if proposition 4 shows varied results.

4.3.2.2 Proposition 4: Misaligned case

For Proposition 4, both EI and LCB show degraded behaviour. Tables 4.3 and 4.4, together with

Figures 4.19 and 4.20, summarise the results.

Table 4.3: EI results for Proposition 4 (T = 100).

Run V σ2 CNIS Mean NIS Var NIS Time [s]

1 1.12991 1.90284 0.0013981 196.237 391.926 10645

2 1.14312 1.89494 0.0009512 196.176 392.022 10668

3 0.82187 2.18042 0.0006435 195.980 391.788 10614

GT 1.00000 2.00000 0.0073827 196.196 389.505 –
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Figure 4.19: The EI optimisation surface using BO to find the best value of CNIS under proposition

4 with a trajectory length of T = 100.

Similar to Proposition 3, EI explores the ridge in detail but also climbs the “walls” of the

valley in places. The overall search pattern behaves the same, but with the pattern of proposition

4. The minimum CNIS drops much lower here, down to 0.0006435, but the recovered V and σ2

are noticeably further from the ground truth. The reasons behind this will be discussed later in

section 4.3.2.3, but for now the focus is just on the shapes of the surfaces.

Table 4.4: LCB results for Proposition 4 (T = 100).

Run V σ2 CNIS Mean NIS Var NIS Time [s]

1 1.16414 1.88283 0.0007651 196.068 392.165 8581

2 0.82742 2.17158 0.0006776 196.116 392.033 8608

3 0.79728 2.21600 0.0017812 195.661 391.980 8594

GT 1.00000 2.00000 0.0073827 196.196 389.505 –
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Figure 4.20: The LCB optimisation surface using BO to find the best value of CNIS under propo-

sition 4 with a trajectory length of T = 100.

In both EI and LCB, the CNIS values stay very stable across runs, around 10−2 to 10−3, even

though the recovered V and σ2 vary a lot. This suggests the mismatch isn’t down to the acquisition

function itself, but something else driving the gap between the estimated and true parameters. The

overall shape of the LCB function is simmilar to that of the proposition 3 run, where the ridge has

more definition but it fails to find the best minimum between the two acquisition function.

Overall, both methods capture the general landscape, but EI edges out LCB. It returns slightly

lower CNIS values and shows a bit more exploration which is vital when searching a flat valley like

structure. For that reason, EI will be used as the default in the experiments to come.

4.3.2.3 Anomalous behaviour at T = 100

A striking feature across both acquisition functions is the anomalous behaviour observed for tra-

jectories of length T = 100 in Proposition 4. The CNIS results were around an order of magnitude

smaller than those obtained at the ground-truth parameters, with “optimal” (V, σ2) estimates

that deviate noticeably from (1, 2). For example, under EI the optimiser located points near

(V, σ2) = (0.82, 2.18) and (1.14, 1.89) with CNIS values on the order of 10−4, far below the base-

line ground-truth CNIS of 7.4× 10−3.

To check whether this effect was just due to one unlucky trajectory, the experiment was repeated

with a new random seed. The anomaly persisted, though the deviation was smaller. Table 4.5

shows one such re-run, where the optimiser again found (V, σ2) values away from (1, 2) that returned

CNIS values between 1.5–3.9× 10−4, still below the baseline of 1.7× 10−3 for that seed.
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Table 4.5: EI results for Proposition 4 with T = 100 under a different seed.

Run V σ2 CNIS Mean(χ2) Var(χ2) Time [s]

1 1.04119 1.96594 0.0001503 196.011 392.037 7260

2 0.95607 2.03654 0.0001595 196.020 392.022 7419

3 1.04876 1.96081 0.0003867 195.964 391.921 7388

GT 1.00000 2.00000 0.0016688 195.929 391.489 –

The persistence of this effect across seeds shows it is not just random initialisation. Instead,

it suggests a structural property of the optimisation surface at T = 100. The cost landscape here

forms a broad, flat ridge where many (V, σ2) pairs that appear similar. Small fluctuations from

finite-sample noise can then carve out shallow dips just off the ridge, which look like true minima.

Bayesian optimisation latches onto these dips because they consistently report lower CNIS than

the ground-truth point, even though they are not genuinely better solutions.

In summary:

• The anomaly is reproducible across seeds, not just a one-off effect.

• The optimiser finds off-truth (V, σ2) with deceptively low CNIS values due to ridge flatness

and surface noise.

• All recovered parameters remain near the ridge, confirming that the optimiser is tracking the

valley but being pulled toward spurious dips.

This behaviour raises doubts about relying on T = 100 alone: the CNIS metric here can give

artificially low scores at incorrect parameter values. A fuller trajectory-length study helps to put

this anomaly in context and shows how varying T changes the stability of the optimisation surface.

4.4 Experiment 3: Trajectory-length Study

Building on the EI–LCB comparison at T = 100, Experiment 3 investigates how trajectory length

T influences the optimisation surface and parameter recovery, in the hopes of improving overall

results. The study focuses on the robustness of the CNIS objective, the mean and variance of NIS

and recovered parameters (V, σ2) for trajectory lengths T ∈ {20, 50, 100, 200} under Proposition 3

and Proposition 4.

4.4.1 Setup

Motivation and objective. The objective is to characterise how trajectory length modifies

the optimisation landscape (surface curvature and ridge flatness), the susceptibility to spurious

noise-induced dips, and the identifiability of the process/measurement parameters. The working

hypothesis is that some trajectory lengths produce broader, shallower minima, with a less defined

point to the ridge, which reduce identifiability and increase sensitivity to Monte Carlo noise. It is

also hypothesised that the two propositions will respond differently because they imply different

effective degrees of freedom.

Design and controls. The experimental configuration is aligned with Experiment 2 to permit

direct comparison:
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• System cases: Proposition 3 (near-ideal) and Proposition 4 (misaligned).

• Trajectory lengths: T ∈ {20, 50, 100, 200}. Shorter trajectories are formed as prefixes of

the T = 200 dataset (this correlation is noted as an experimental caveat).

• Objective: CNIS computed via the same Monte Carlo budget used in Experiment 2.

• Bayesian optimisation: Expected Improvement (EI) is used as the acquisition function;

GP surrogate with Matérn-5/2 ARD kernel; BO budget and initialisation match Experi-

ment 2.

• Repetitions: Three independent BO repetitions (with the same distinct seed) per (Proposition, T )

pair. The best (lowest CNIS) run is reported along with the NIS mean and standard deviation

across repetitions where informative.

• Controls: Factor graph structure, solver tolerances, ∆t, and parallel execution settings are

held constant.

• Outputs: recovered (V, σ2), CNIS, mean/variance of NIS, runtime.

The important thing to note is that using prefixes of the whole trajectory helps with real world

implementation, reducing the amount of data required to collect, giving a more realistic way of

validating results.

Reproducibility notes. All seeds and runtime environment details are logged in the HDF5

outputs. Since shorter trajectories are prefixes of the T = 200 run, results at different T are not

statistically independent. Still, the comparison is useful as it shows how trajectory length affects

stability and parameter recovery.

4.4.1.1 Results

Proposition 3: Near-ideal case Table 4.6 shows the outcomes for Proposition 3 across the

four tested trajectory lengths.
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Table 4.6: EI results for Proposition 3 across trajectory lengths.

T Run V σ2 CNIS Mean NIS Var NIS

200 1 1.01189 1.99489 0.007260 1187.914 2393.140

2 1.00943 2.00598 0.007047 1187.612 2392.021

3 1.01294 1.99145 0.007149 1187.791 2392.626

GT 1.00000 2.00000 0.014759 1196.248 2427.062

100 1 1.00617 2.00855 0.004932 593.160 1192.186

2 1.00049 2.03066 0.005150 593.226 1192.579

3 1.01434 1.97659 0.005083 593.212 1192.471

GT 1.00000 2.00000 0.011935 596.441 1205.419

50 1 1.01179 2.00490 0.007787 293.717 591.974

2 1.01483 1.99333 0.007791 293.717 591.972

3 1.03302 1.92848 0.008278 293.690 592.263

GT 1.00000 2.00000 0.017988 296.247 602.242

20 1 1.00121 2.01596 0.003965 115.551 232.019

2 1.00040 2.01832 0.004130 115.566 232.088

3 1.00399 2.00532 0.003906 115.551 231.993

GT 1.00000 2.00000 0.007388 115.959 233.638

The three runs for each T are very consistent. Comparing BO CNIS results to ground truth

CNIS gives ratios of about:

GT/CNISmin ≈



1.89 (T = 20),

2.31 (T = 50),

2.42 (T = 100),

2.09 (T = 200).

So BO finds parameters that cut CNIS by approximately a factor of two across all T . Errors in V

and σ2 are small (MAPEs ≈ 0.2−2.0%). Interestingly, T = 20 gives slightly better CNIS than longer

trajectories, probably because short runs don’t accumulate rare anomalies. Still, all CNIS values

are in the same 10−3 range. This differs from the expectation that longer T increases the accuracy

as the absolute difference in NIS mean and covariance stay the same but the relative difference

decreases with the larger DoF. However the extra length also introduces more opportunities for

errors, which seems to balance the CNIS results out between varied lengths of trajectory.
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Figure 4.21: Proposition 3, T = 20 Figure 4.22: Proposition 3, T = 50

Figure 4.23: Proposition 3, T = 100 Figure 4.24: Proposition 3, T = 200

Figure 4.25: A summary of all the different trajectory legnth BO studies under proposition 3,

ranging from T = 20, 50, 100, 200.

The surface plots (Fig. 4.25) also look very similar across T , suggesting trajectory length has

little effect on the overall outcome, at least up to T = 200 for Prop 3.

Proposition 4: Misaligned case Table 4.7 gives the numbers for Prop 4.
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Table 4.7: EI results for Proposition 4 across trajectory lengths.

T Run V σ2 CNIS Mean NIS Var NIS

200 1 1.00578 2.00108 0.002367 395.255 792.383

2 1.00179 2.00484 0.002241 395.196 792.165

3 1.00610 2.00153 0.002160 395.155 791.982

GT 1.00000 2.00000 0.004866 396.079 795.705

100 1 1.12991 1.90284 0.001398 196.237 391.926

2 1.14312 1.89494 0.000951 196.176 392.022

3 0.82187 2.18042 0.000643 195.980 391.788

GT 1.00000 2.00000 0.007383 196.196 389.505

50 1 0.99273 2.04302 0.012351 94.832 192.020

2 0.97240 2.06087 0.012492 94.815 191.986

3 1.02242 2.01922 0.012451 94.818 191.989

GT 1.00000 2.00000 0.027024 96.076 197.103

20 1 1.03015 1.97876 0.001379 35.965 72.030

2 1.04868 1.96592 0.001466 35.963 72.032

3 1.00795 1.99548 0.001218 35.957 71.998

GT 1.00000 2.00000 0.001717 35.975 72.074

Prop 4 is more sensitive to T . The GT/BO CNIS ratios are:

GT/CNISmin ≈



1.41 (T = 20),

2.19 (T = 50),

11.64 (T = 100) (outlier),

2.25 (T = 200).

The T = 100 case is the clear outlier. BO drives CNIS very low but the recovered parameters

are way off (MAPE(V ) ≈ 15.0%, MAPE(σ2) ≈ 6.4%). By contrast, T = 200 gives both low

CNIS and very accurate parameters (MAPEs below 0.5%). So the T = 100 result is most likely

a noise-induced dip that BO locked onto. This is a reminder that very small CNIS values aren’t

always trustworthy.

For the other lengths (T = 20, 50, 200), the ratios to GT are similar, but the absolute CNIS

values differ more than in Prop 3. This makes sense: Prop 4 adds an optimisation step, which

seems to amplify differences between trajectories. In other words, the extra flexibility in the system

makes results more variable depending on T .
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Figure 4.26: Proposition 4, T = 20 Figure 4.27: Proposition 4, T = 50

Figure 4.28: Proposition 4, T = 100 Figure 4.29: Proposition 4, T = 200

Figure 4.30: A summary of all the different trajectory legnth BO studies under proposition 4,

ranging from T = 20, 50, 100, 200.

The surfaces in Fig. 4.30 all look similar in shape, so the T = 100 anomaly seems down to

unlucky alignment in that specific prefix, not a fundamental difference in the landscape.

Cross-case synthesis and recommendations Two main takeaways:

1. Prop 3 is stable: Near-ideal init gives accurate, consistent recovery across all T (MAPEs

small, GT/BO CNIS ratios ∼ 2). Larger T averages out noise better.

2. Prop 4 is sensitive: Misaligned init increases sensitivity to the specific sequence and seed.

The T = 100 anomaly shows BO can exploit a dip that doesn’t generalise.

Practical points:

• Always repeat BO on multiple independent trajectories lengths (prefixes and independent

runs) and combine results (e.g. median) to avoid overfitting to quirks.

• Mixing trajectory lengths is a cheap validation check when data is scarce.

• Treat concerningly low CNIS values with caution: check parameter errors if ground truth is

known, or repeat runs if it isn’t.
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Overall parameter recovery Across all runs, the best (V, σ2) estimates are consistently close

to ground truth. For Proposition 3, recovery is very stable: all trajectory lengths cluster near

(1.01, 2.00), with the closest of all trajectories being T = 20 with run 3, and run 2 from T = 200

followed closely behind. For Proposition 4, the most reliable recovery occurs at T = 200, with

both parameters within < 0.5% of the true values. In contrast, T = 100 produces misleading

estimates despite an apparently good CNIS, showing how strongly trajectory length interacts with

sequence-specific quirks. When runtime allows, T = 200 is the safest choice, though T = 20 or

50 still give reasonable estimates in well-initialised setups, but results should always be confirmed

across multiple trajectories.

Runtime trade-offs Trajectory length also drives runtime. Shorter runs (T = 20, 50) finish

quickly, which is convenient for rapid checks or when data is limited. Longer runs (T = 200)

take more time but provide the most reliable results, especially for Proposition 4. The trade-off

is clear: shorter trajectories are efficient but more sensitive to noise, whereas longer ones average

out stochastic fluctuations at the cost of computational effort.

Design insight The appropriate trajectory length depends on the system and the setup. For the

tested 2D tracking setup, shorter trajectories are generally fine for proposition 3, since parameter

recovery is robust. For misaligned initialisation (Prop 4), longer trajectories are strongly recom-

mended to avoid BO locking onto spurious dips. In practice, combining several shorter prefixes

with one longer run offers a good compromise between efficiency and reliability.

Limitations and next steps Since shorter trajectories here are just prefixes of T = 200, some

T (notably T = 100) may be biased by sequence-specific quirks. The next step is testing variations

of ∆t within a run, to see if time spacing itself shapes the optimisation surface.
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Chapter 5

Extension: Improvement and

Practical Performance

5.1 Extension 1: Variable Time steps

5.1.1 Setup

The previous experiments held the sampling interval ∆t fixed throughout the trajectory, so that

the process noise covariance Q(∆t) in Eq. 3.3 and 3.10 was homogeneous across all steps. In this

experiment, the aim is to deliberately vary ∆t within the same trajectory, alternating between

∆t ∈ {1, 5, 10} under two mixture ratios: an even schedule (33:33:33) and a skewed schedule

(60:30:10) dominated by small time steps. The trajectory length is fixed at T = 50, like the previous

test, however T = 100 will also be tested to explore the effects on outlier data. Aside from this

change in step scheduling, the Bayesian optimisation procedure, objectives, and evaluation metrics

follow the same setup as before, ensuring results are directly comparable. It is important to note

that the length of the trajectory refers directly to the number of measurements taken, not the

length of the states. Figure 5.1.1 shows the number of measurements misaligning with the states

once ∆t is increased

Figure 5.1: Example Markov Chain of the changing structure for the factor graph. This case uses

the 33:33:33 ratio alongside T = 50, showing how measurements change

The motivation is to investigate how heterogeneous step sizes reshape the optimisation land-
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scape and affect identifiability of the process and measurement parameters. Since Q(∆t) grows

polynomially with ∆t(cubic in position variance, quadratic in cross-terms, and linear in velocity

variance)longer steps magnify the effect of process noise, while shorter steps impose tighter con-

straints. When these are combined, some portions of the factor graph become strongly informative

while others are diffuse, producing an optimisation surface that is no longer a broad, flat valley

but instead contracts and steepens around certain directions in (V, σ2). Put differently, large ∆t

segments act as leverage points, exaggerating the penalty for mis-specified V , whereas small ∆t

segments stabilise the trajectory and reduce Monte Carlo variance in CNIS/NIS. The two selected

ratios of the ∆t schedules should show different trade-offs: the even ratio balances these influences,

while the skewed ratio concentrates on local stability with occasional large steps to enforce global

consistency.

This part of the experiment is motivated by general control-theory considerations around ir-

regular sampling. In practice, unevenly spaced measurements can make it harder to observe the

full state, which in turn can complicate parameter estimation. On the other hand, having more

frequent observations tends to reduce the variance of estimated parameters, simply because there’s

more information to work with [36, 9]. Thinking about it in the context of our mixed-∆t trajec-

tories, this gives us a way to explore how the balance of short and long intervals might affect how

well V and σ2 can be recovered within the Bayesian optimisation setup. From this perspective,

we would expect that an even mix of ∆t values might maintain the ridge-like structures we saw in

earlier experiments, while a skewed mix could sharpen the minima and make parameter recovery

slightly more precise, though perhaps more sensitive to noise.

All runs are made similarly to that in section 4.3. The only variation in terms of the BO and

grid search methods are the changing ∆t structure. The same ∆t schedule is applied consistently

across Proposition 3 (near-ideal initialisation) and Proposition 4 (misaligned initialisation) cases,

so that differences in outcome can be attributed to the interaction between initialisation and ∆t

heterogeneity.

5.1.2 Results under Varying ∆T Ratios

Having established the baseline trajectory-length results, the next step is to test the effect of mixing

different ∆T values within a single trajectory. A trajectory length of T = 50 is adopted as the

main case, since it strikes a balance between computational efficiency and the ability to refine

results. In the previous section, T = 50 was shown to be the least well-performing of the otherwise

“good” configurations, making it a natural candidate for improvement. Two mixing schedules are

considered: an even 33:33:33 ratio of short/medium/long ∆T , and a skewed 60:30:10 ratio. These

are compared against the constant-∆T baseline. The focus is again on CNIS, NIS statistics, and

parameter recovery. The representation of the shapes shall be grid search plots as they do a better

job of showing the overall shape. BO experiments will be run alongside these but only tabulated

data will be shown.

5.1.3 Proposition 3: Invariance under ∆T

For Proposition 3, the introduction of mixed ∆T values produces no meaningful change compared

with the constant-∆T baseline. Figure 5.2 shows the grid search heat maps for both the 33:33:33

and 60:30:10 schedules, alongside the constant-∆T case. All surfaces remain virtually identical,

confirming that the optimisation landscape is unaffected. This invariance arises because the model

and filter are perfectly matched: the discretisation terms F (∆T ) and Q(∆T ) are both derived
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from the same continuous-time dynamics. As a result, the innovations remain properly whitened,

and the NIS expectation is governed only by measurement dimension.

Figure 5.2: Grid search landscapes for Proposition 3, T = 50: constant ∆T , 33:33:33, and 60:30:10.

Focussing on the true results now there are two things to take note of. Firstly they are very

similar to that of the constant ∆t method in table 4.6, with only minor changes for both the

schedule ratios due to the randomness of the BO algorithm.

Table 5.1: Proposition 3, 33:33:33 ratio, T = 50.

Run V σ2 C NIS Mean NIS Var Orig q Orig R

1 0.99425 2.07605 0.008416 293.71 592.39 1 2

2 1.01522 1.99035 0.007955 293.79 592.28 1 2

3 1.00186 2.04361 0.008054 293.75 592.24 1 2

GT 1 2 0.01799 296.25 602.24 1 2

Table 5.2: Proposition 3, 60:30:10 ratio, T = 50.

Run V σ2 C NIS Mean NIS Var Orig q Orig R

1 1.01312 1.99998 0.007877 293.71 591.94 1 2

2 1.00045 2.05019 0.008000 293.71 592.14 1 2

3 0.99837 2.06005 0.008014 293.65 591.97 1 2

GT 1 2 0.01799 296.25 602.24 1 2

5.1.4 Proposition 4: Amplification and Shifts

In contrast, Proposition 4 shows much stronger changes when ∆T is mixed. At T = 50, the

optimisation surface becomes noticeably sharper and more amplified compared with the constant-

∆T case.

Figure 5.3: Grid search landscapes for Proposition 4, T = 50: constant ∆T , 33:33:33, and 60:30:10.
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The shapes of the graphs vary drastically with variability in ∆t. The clearest change appears in

the even ratio 33:33:33, which shifts the surface to look more like the Proposition 3 case: sensitivity

in V is reduced, while shifts in σ2 dominate the structure. For the 60:30:10 split, the graph no

longer clearly favours either parameter. Instead, it creates a more balanced trade-off between V

and σ2, with both showing similar sensitivities. On top of this, the overall valley bottom shrinks,

reflecting the underlying shift in shape.

These large shifts lead to very different experimental outcomes. Tables 5.3–5.4 show the nu-

merical results.

Table 5.3: Proposition 4, 33:33:33 ratio, T = 50.

Run V σ2 C NIS Mean NIS Var Orig q Orig R

1 1.00339 2.04962 0.009367 95.21 192.21 1 2

2 1.00824 2.03226 0.008899 95.27 192.03 1 2

3 1.02224 1.96724 0.009271 95.18 192.13 1 2

GT 1 2 0.02225 96.15 196.02 1 2

Table 5.4: Proposition 4, 60:30:10 ratio, T = 50.

Run V σ2 C NIS Mean NIS Var Orig q Orig R

1 0.97595 2.11590 0.01408 94.66 192.00 1 2

2 0.97212 2.12588 0.01454 94.64 191.95 1 2

3 0.98947 2.08361 0.01412 94.67 192.04 1 2

GT 1 2 0.02969 96.04 197.70 1 2

The 33:33:33 ratio gives parameter estimates closest to the ground truth, while the 60:30:10 ratio

drifts further away. This suggests that skewed interval distributions reduce stability in recovery.

A plausible explanation is the mismatch between model and filter discretisations, which biases the

innovations. With moderate variability in ∆T , the ridge sharpens and recovery improves, but once

the distribution becomes skewed, the surface distorts.

Interestingly, for the more balanced 33:33:33 case, the overall CNIS is actually lower than in the

constant-∆T setup. Table 4.7 shows that using the ground truth V and σ2, the CNIS is 0.027024,

whereas the varied-∆t ground truth results gave 0.02225. By contrast, the skewed 60:30:10 ratio

performed worse, with a value of 0.02969. The BO-recovered parameters also show smaller CNIS

values under the even ratio. In effect, the balanced variability brings V closer to its true value

while still favouring σ2, consistent with the shifted ridge structure described earlier. Since the

even ratio clearly improves recovery while the skewed version distorts it, the 33:33:33 case will

be carried forward for further testing at T = 100 to see if it helps mitigate the outlier behaviour

observed there.

5.1.5 Outlier Case: T = 100 in Proposition 4

The T = 100 case in Proposition 4 was previously highlighted as an outlier. Figure 5.4 shows

that, similar to the T = 50 case, introducing variability in ∆T shifts the surface to resemble

Proposition 3 more closely.
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Figure 5.4: Grid search landscapes for Proposition 4, T = 100: 33:33:33 vs. constant ∆T .

On the grid search, the best parameter lies far from the true parameter, already pointing to

the poor behaviour that follows.

Table 5.5: Proposition 4, 33:33:33 ratio, T = 100.

Run V σ2 C NIS Mean NIS Var Orig q Orig R

1 1.12305 1.55032 0.001408 196.11 392.33 1 2

2 0.89377 2.63507 0.001251 196.23 391.96 1 2

3 1.11730 1.56849 0.002110 196.03 391.23 1 2

GT 1 2 0.02200 195.98 383.50 1 2

Here, the introduction of mixed ∆T amplifies the poor behaviour already present. CNIS values

increase across the board compared with constant ∆T , including at the ground truth, and the

surface shifts further away from the expected minimum. Outliers are magnified, leading to unstable

(V, σ2) estimates (Table 5.5).

This essentially confirms that variability in ∆T can worsen performance when results are already

poor, making it harder to detect or correct issues. The fact that T = 100 was identified as an

outlier in Section 4.4 only compounds the problem, leading to highly unstable convergence of V

and σ2 away from the true values.

5.1.6 Summary

To summarise, introducing variable ∆T had little effect on Proposition 3, but led to amplified and

shifted behaviour in Proposition 4. The even 33:33:33 split generally improved recovery, whereas

skewed ratios tended to worsen stability. Outlier results could not be corrected, and were even

made worse. These findings show that while balanced variability can sharpen the optimisation

surface, it can also magnify poor behaviour when conditions are already unfavourable.

In the following section, CNIS-based measures are replaced with MSE, to examine whether im-

proving consistency through tuning actually impacts error in this factor graph estimation problem,

similar to Kalman Filters.
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5.2 Extension 2: Mean Squared Error Observations

Up to this point, evaluation has focussed on consistency-based measures such as NIS, NEES, and

their normalised variants. These have been central to the Bayesian optimisation experiments [8],

i.e. that improving consistency should indirectly improve accuracy. While this has been widely

discussed in the Kalman filter literature as using correctly tuned noise parameters is vital, it is not

obvious that the same link holds in the factor graph setting used here. This section therefore shifts

focus to accuracy directly, by measuring mean squared error (MSE) of estimated trajectories.

5.2.1 Setup

The setup mirrors the earlier grid search experiments, but with MSE replacing CNIS as the eval-

uation metric. A blanket search was performed across (V, σ2) pairs, with average MSE computed

over 10,000 Monte Carlo runs. To make the results interpretable, three plots were produced at

T = 50:

• 2D heatmap showing raw MSE values.

• Thresholded heatmap collapsing all MSE > 1 to a single colour, highlighting the low-error

region.

• 3D surface showing the MSE landscape over the (V, σ2) grid.

In addition to these plots, a selection of parameter settings from earlier sections were re-tested

to assess whether tuning had an impact on MSE. The resulting table compares trajectory lengths

T ∈ {20, 50, 100, 200} across ground truth parameters, BayesOpt-tuned parameters (from both

propositions), and deliberately poor noise settings.

5.2.2 Results and Discussion

Figures 5.5, 5.6, and 5.7 show the T = 50 results. The overall MSE surface is flat: almost

all reasonable (V, σ2) values achieve errors well below 1. The thresholded plot emphasises that

the majority of the parameter space lies in this low-error regime, with only extreme noise mis-

specifications producing degraded performance.

Figure 5.5: MSE heatmap, T = 50.
Figure 5.6: MSE heatmap, T = 50. Regions

with MSE > 1 are collapsed to a single colour.
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Figure 5.7: 3D MSE surface over (V, σ2), T = 50.

Table 5.6: MSE results for the nonlinear model across different trajectory lengths and parameter

settings.

T GT Best Prop 3 Best Prop 4 Large Measurement Large Process

200 0.60447 0.604468 0.604468 9.29314 1.89557

100 0.614767 0.614767 0.619497 9.33039 1.90011

50 0.633578 0.633582 0.633626 9.39309 1.90294

20 0.688271 0.688272 0.688283 8.91858 1.90551

Table 5.7: MSE results for the linear model across different trajectory lengths and parameter

settings.

T GT Best Prop 3 Best Prop 4 Large Measurement Large Process

200 0.603196 0.603194 0.603194 9.48971 1.89546

100 0.613518 0.613518 0.618237 9.50112 1.90000

50 0.632351 0.632355 0.632401 9.48916 1.90283

20 0.687119 0.687120 0.687131 1.90540 1.90540

The tabulated averages confirm the graphical trends. For both the nonlinear (Table 5.6) and

linear (Table 5.7) models, the ground truth and BayesOpt-tuned parameters produce almost iden-

tical results across all T . Longer trajectories (e.g. T = 200) yield slightly lower MSE, consistent

with reduced estimator variance when more data are available.

The impact of deliberately poor parameter settings is immediately visible. Large process noise

consistently produces moderate degradation, with MSE values clustering around ∼ 1.9. In contrast,

large measurement noise causes severe errors (∼ 9), overwhelming the estimator and confirming its

greater sensitivity to mis-specified measurement uncertainty. This asymmetry is natural given the

true parameter setting (V, σ2) = (1, 2): underestimating measurement precision penalises accuracy

more strongly than modest distortions in process modelling.
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Figure 5.8: MSE heatmap, T = 100.
Figure 5.9: MSE heatmap, T = 100. Regions

with MSE > 1 are collapsed to a single colour.

Figure 5.10: 3D MSE surface over (V, σ2), T = 100.

Perhaps most striking is the behaviour of the T = 100 case. Despite being identified as an outlier

in the consistency-based experiments (Section 4.4), its MSE is practically indistinguishable from the

other trajectory lengths. This demonstrates that even when consistency with the noise parameters

appear unstable, overall trajectory accuracy remains robust. In other words, consistency measures

may flag problematic convergence behaviour, but the estimator can still achieve low MSE.

A final comparison between linear and nonlinear cases shows only marginal differences. The

linear model tends to produce slightly lower MSE, which can be attributed to simpler dynamics and

less variability across trajectories, making estimation easier. The nonlinear constant-turn model

introduces more structural uncertainty, which inflates MSE slightly, but the differences remain

small overall.

Taken together, these results suggest that while Bayesian tuning is effective for improving

consistency, accuracy in terms of MSE is already well preserved across most of the parameter

space. Tuning matters far less for MSE than for CNIS in GPS based factor graph estimation,

though extreme mis-specification can still cause severe degradation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This dissertation has presented a comprehensive analysis of automatic tuning for factor graph-

based estimation using Bayesian Optimization (BO). The work demonstrates a proof-of-concept

for automatically tuning the noise parameters of a factor graph-based tracking system, providing

a significant advancement over manual tuning and brute-force grid searches.

A central contribution of this study is the validation of the intricate ”diagonal valley” structure

of the tuning landscape and the critical role of Monte Carlo convergence in obtaining a stable

objective function. It was shown that a sufficient number of Monte Carlo runs is essential for

reliable evaluation of the Consistent Normalized Innovation Squared (CNIS) metric. Specifically,

while preliminary experiments with N = 500 runs produced a flat and noisy landscape, stable CNIS

estimates for Proposition 3 required approximately N = 5, 000 runs, and Proposition 4 required

at least N = 10, 000 runs. Probability density function analyses and Pearson tests confirmed the

convergence of the NIS distribution to the expected χ2 distribution at these higher sample counts,

highlighting the statistical necessity for large simulation budgets.

The dense grid search across both linear and nonlinear models revealed a smooth, diagonal

”valley” in the CNIS cost surface, reflecting a fundamental trade-off between process noise inten-

sity (V ) and measurement noise variance (σ2). This broad and flat valley indicates that multiple

(V, σ2) combinations can achieve statistical consistency, explaining why Bayesian Optimization

can converge to low CNIS values that do not necessarily correspond to the ground truth param-

eters. This susceptibility to noise-induced strange minima behaviour, particularly evident in the

trajectory-length study at T = 100, illustrating a structural property of the optimization problem

rather than an algorithmic failure.

Despite successful CNIS minimization, meaning Q and R covariance matrix were adequately

found, the analysis revealed a near-zero correlation between CNIS and the estimator’s Mean

Squared Error (MSE) for the chosen system model. Dense grid search validation showed that

a wide range of parameter values, including ground truth and BO-tuned parameters, achieved

similarly low MSE. This indicates that the factor graph-based estimator is inherently robust and

that precise CNIS optimization is not strictly necessary to improve tracking accuracy, only ”good

enough” guesses are required, making sure that large inbalances between V and σ2 aren’t picked.

This distinction underlines an important subtlety. Statistical consistency tests ensure that the

assumed noise models align with the observed innovation statistics, meaning the system “correctly”

identifies its noise parameters. While this is valuable for diagnosis and theoretical soundness, it does
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not necessarily translate into better tracking performance in practice. For the GPS tracking factor

graph studied here, estimator robustness meant that even imperfectly tuned parameters produced

similar MSE outcomes, limiting the practical impact of fine tuning consistency optimization.

Finally, the study explored the impact of variable timesteps. For Proposition 3 (ideal ini-

tialization with no optimisation), heterogeneous time intervals had minimal effect, based on the

fact the setup of the R parameter was not dependent on the time step. For Proposition 4 (mis-

aligned initialization + optimisation), variable timesteps amplified and shifted the CNIS landscape,

demonstrating the fragility of the tuning process under non-ideal conditions.

In summary, the dissertation establishes that while Bayesian Optimization is a powerful method

for automatically tuning factor graph parameters, reliance on a single consistency metric such as

CNIS may not suffice for practical accuracy. The results highlight the need for multi-objective

approaches and more robust, computationally efficient frameworks for real-world deployment.

6.2 Future Work

Based on the results of this project, several directions for future work can be identified. These aim

to improve both the performance of the tuning framework and its relevance to practical estimation

problems.

6.2.1 Multi-Objective Optimization

The difference observed between CNIS and MSE suggests that a single objective is not always

enough. A useful extension would be a multi-objective Bayesian Optimization (MOBO) approach,

which considers both consistency and accuracy at the same time. Instead of giving one ”best” set

of parameters, this would provide a set of trade-offs, allowing the choice of parameters to depend

on the priorities of a specific application.

6.2.2 Efficiency and Robustness

The framework in its current form is computationally expensive and at times sensitive to strange

minima behaviour. Two ways forward are:

• Multi-Fidelity Bayesian Optimization (MFBO): Using cheaper, lower-fidelity evalua-

tions (e.g., shorter runs or fewer Monte Carlo samples) to guide the search before confirming

candidates with more accurate evaluations. This could cut down overall cost.

• Noise-Aware Acquisition Functions: Developing acquisition functions that explicitly

handle noise and flat cost surfaces, helping avoid poor convergence.

6.2.3 Alternative Measurement Models

Another line of investigation would be to test the tuning method with different measurement

types. For example, replacing position measurements with range-bearing measurements changes

both the Jacobians and the structure of the noise covariance matrices. This would test how well

the approach generalises. Key questions include:

• How does the CNIS surface change when using range-bearing measurements?

• Does Bayesian Optimization remain effective at finding good parameter regions in this case?
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• How does the relationship between CNIS and MSE change with these measurements?

Testing such cases would show whether the method is flexible enough for a wider range of

estimation problems, including robotics and navigation tasks that rely on non-linear sensors.

6.2.4 Application to Real-World Problems

Finally, there are several ways this work could be pushed towards real applications:

• Non-Gaussian Noise: Real sensors often produce outliers or heavy-tailed noise, so relaxing

the Gaussian assumption could improve robustness, but comes with its own set of problems

as the theory described in chapter 2 relies on Gaussian distributed assumptions.

• Adaptive Tuning: Moving from an offline method to an online one could allow parameters

to adapt as conditions change. Reinforcement learning may offer one route, though this

brings new challenges for safety and stability.

• Multi-Sensor Fusion and SLAM: Extending the framework to multi-sensor or SLAM

problems would test scalability, since these involve larger parameter spaces. Multi-fidelity

ideas could again help to manage complexity.

Overall, these future directions would help to move the method from a proof of concept towards

a more general and practical tool for automatic tuning in factor graph-based estimation.
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Appendix A

An Appendix About Stuff

This appendix lists all the source code files used in this dissertation for the Bayesian optimization

experiments and factor graph tracking implementation.

A.1 C++ Source Files

• BO Tracking Test linear.cpp - Bayesian optimization implementation for linear tracking

systems

• BO Tracking Test Nonlinear.cpp - Bayesian optimization implementation for nonlinear

tracking systems

• collect nis linear.cpp - NIS data collection utility for linear systems

• collect nis nonlinear.cpp - NIS data collection utility for nonlinear systems

• convergence test linear.cpp - Convergence analysis for linear tracking

• convergence test nonlinear.cpp - Convergence analysis for nonlinear tracking

• CrossSection Tracking Nonlinear.cpp - Cross-section analysis for nonlinear systems

• Evaluate MSE Points Linear.cpp - MSE evaluation at specific parameter points for linear

systems

• Evaluate MSE Points Nonlinear.cpp - MSE evaluation at specific parameter points for

nonlinear systems

• fg class tracking.cpp - Main factor graph tracking class implementation

• fg class tracking.h - Header file for factor graph tracking class

• GridSearch Tracking linear.cpp - Grid search optimization for linear systems

• GridSearch Tracking Nonlinear.cpp - Grid search optimization for nonlinear systems

• GridSearch Tracking Linear MSE.cpp - Grid search minimising average position MSE for

linear systems

• GridSearch Tracking Nonlinear MSE.cpp - Grid search minimising average position MSE

for nonlinear systems
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• tracking gen data linear.cpp - Linear trajectory data generation

• tracking gen data nonlinear.cpp - Nonlinear trajectory data generation

• 2D h5 loader.h - HDF5 loaders for states and measurements

A.2 Configuration Files

• scenario linear.yaml - Configuration parameters for linear tracking experiments

• scenario nonlinear.yaml - Configuration parameters for nonlinear tracking experiments

All source code files are available in the project repository on github: https://github.com/WillTerry01/UCL-

Dissertation.
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